Ideals generated by $\alpha - a$ and ideals generated by $a\alpha - 1$

of a Laurent extension $R[\alpha, \alpha^{-1}]$ of a Noetherian domain

KEN-ICHI YOSHIDA AND KIYOSHI BABA*

Department of Applied Mathematics
Okayama University of Science
Ridai-cho 1-1
Okayama 700-0005
JAPAN
and
*Department of Mathematics
Faculty of Education and Welfare Science
Oita University
Oita 870-1192
JAPAN
(Received November 1, 2002)

Abstract

Let R be a Noetherian domain and α an anti-integral element over R. Set $A=R[\alpha]$. Let a be an element of R. Then we investigate the contraction ideals $(\alpha-a)R[\alpha,\alpha^{-1}]\cap A$ and $(a\alpha-1)R[\alpha,\alpha^{-1}]\cap A$, which are described in terms of the denominator ideals $I_{[\alpha]}$ and $I_{[\alpha^{-1}]}$, and the monic minimal polynomials $\varphi_{\alpha}(X)$ and $\varphi_{\alpha^{-1}}(X)$.

Let R be a Noetherian domain with quotient field K and R[X] a polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K and $\pi:R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X) = \alpha$. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha} = d$, and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$, $(\eta_1, \dots, \eta_d \in K)$. We define $I_{[\alpha]} := \bigcap_{i=1}^d I_{\eta_i}$ and $J_{[\alpha]} := I_{[\alpha]}(1, \eta_1, \dots, \eta_d)$ where $I_{\eta_i} = \{c \in R; c\eta_i \in R\}$ and $(1, \eta_1, \dots, \eta_d)$ is an R-module generated by $1, \eta_1, \dots, \eta_d$. An element α is called an anti-integral element of degree d over R if $I_{[\alpha]} \not\subset P$ for every $P \in \mathrm{Dp}_1(R)$ where $\mathrm{Dp}_1(R) = \{p \in \mathrm{Spec} R; \mathrm{depth} R_p = 1\}$.

Our general reference for unexplained terms is [2].

Lemma 1.([5, Lemma 1]) Let a be an element of R. Then the following assertions hold:

- $(1) \varphi_{\alpha-a}(X) = \varphi_{\alpha}(X+a).$
- $(2) I_{[\alpha-a]} = I_{[\alpha]}.$
- (3) If α is an anti-integral element of degree d over R, then so is αa .

Proposition 2. Let R be an integral domain and α an anti-integral element of degree d over R. Set $A = R[\alpha]$ and let a be an element of R. Then the following two assertions hold:

- (1) $I_{[\alpha]}\varphi_{\alpha}(a) = (\alpha a)A \cap R$.
- (2) If $\alpha a \neq 0$, then $(\alpha a)A \cap R = I_{[(\alpha a)^{-1}]}$.

Proof. (1) We prove that $I_{[\alpha]}\varphi_{\alpha}(a) \subset (\alpha - a)A \cap R$. By Lemma 1, we know that $I_{[\alpha]}\varphi_{\alpha}(a) = I_{[\alpha-a]}\varphi_{\alpha-a}(0)$. Then it is clear that $I_{[\alpha]}\varphi_{\alpha}(a) \subset (\alpha - a)A \cap R$.

We prove the converse inclusion. Let b be an element of $(\alpha - a)A \cap R$. Then there exists a polynomial g(X) of R[X] such that $b = (\alpha - a)g(\alpha)$. Since $\ker \pi = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$, there exists a polynomial h(X) of $I_{[\alpha]}R[X]$ such that $(X - a)g(X) - b = h(X)\varphi_{\alpha}(X)$. Substituting a for X, we have $-b = h(a)\varphi_{\alpha}(a)$. Hence b is in $I_{[\alpha]}\varphi_{\alpha}(a)$ because h(a) is in $I_{[\alpha]}$. This shows that $(\alpha - a)A \cap R \subset I_{[\alpha]}\varphi_{\alpha}(a)$.

(2) By the assertion (1), we have $(\alpha - a)A \cap R = I_{[\alpha]}\varphi_{\alpha}(a)$. By Lemma 1, we see that $I_{[\alpha]}\varphi_{\alpha}(a) = I_{[\alpha-a]}\varphi_{\alpha-a}(0)$. Simple calculation shows that $I_{[\alpha-a]}\varphi_{\alpha-a}(0) = I_{[(\alpha-a)^{-1}]}$ because $I_{[\alpha}\varphi_{\alpha}(0) = \eta_d I_{[\alpha]} = I_{[\alpha^{-1}]}$. Hence $(\alpha - a)A \cap R = I_{[(\alpha-a)^{-1}]}$.

Corollary 3. Let R be an integral domain and α an anti-integral element of degree d over R. Set $A = R[\alpha]$ and let a be an element of R. Then $\alpha - a$ is a unit of A if and only if $I_{[\alpha]}\varphi_a(a) = R$.

Proof. By Proposition 2 (1), we know that $(\alpha - a)A \cap R = R$ if and only if $I_{[\alpha]}\varphi_a(a) = R$. It is easily seen that $\alpha - a$ is a unit of A if and only if $(\alpha - a)A \cap R = R$. Hence we reach the conclusion. Q.E.D.

We will consider the contraction of an ideal $(\alpha - a)R[\alpha, \alpha^{-1}]$ to $R[\alpha]$ and to R.

Theorem 4. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Set $A = R[\alpha]$. Assume that $\operatorname{depth} R_p = 1$ for every prime divisor P of αA with $p = P \cap R$. Let a be an element of R such that a $(\operatorname{mod} I_{[\alpha^{-1}]})$ is a non-zero divisor of $R/I_{[\alpha^{-1}]}$. Then the following two assertions hold:

- $(1) (\alpha a)R[\alpha, \alpha^{-1}] \cap A = (\alpha a)A.$
- (2) $(\alpha a)R[\alpha, \alpha^{-1}] \cap R = I_{[\alpha]}\varphi_{\alpha}(a)$

Proof. (1) Set $B=R[\alpha,\alpha^{-1}]$. The inclusion $(\alpha-a)B\cap A\supset (\alpha-a)A$ is clear. We will prove the converse inclusion. Let c be an element of $(\alpha-a)B\cap A$. Then there exists an element b of B such that $c=(\alpha-a)b$. Let P be an element of $\mathrm{Dp}_1(A)$. If α is not in P, then $A_P=B_P$ and c is in $(\alpha-a)B_P=(\alpha-a)A_P$. Hence $c/(\alpha-a)$ is in A_P . If α is in P, then P is a prime divisor of αA by [6, Proposition 1.10]. Set $p=P\cap R$. Then, by the assumption, p is an element of $\mathrm{Dp}_1(R)$. We will prove that $I_{[\alpha^{-1}]}\subset p$. Note that $\eta_d\neq 0$ and $I_{[\alpha^{-1}]}=\cap_{i=0}^{d-1}I_{\eta_d^{-1}\eta_i}$ where $\eta_0=1$. Let r be an element of $I_{[\alpha^{-1}]}$, then

$$-r = r\eta_d^{-1}\alpha^d + r\eta_d^{-1}\eta_1\alpha^{d-1} + \dots + r\eta_d^{-1}\eta_{d-1}\alpha$$

and $r\eta_d^{-1}, r\eta_d^{-1}\eta_1, \ldots, r\eta_d^{-1}\eta_{d-1}$ are in R because r is an element of $I_{[\alpha^{-1}]}$. Hence r is in $P \cap R = p$, and so $I_{[\alpha^{-1}]} \subset p$. Since $I_{[\alpha^{-1}]}$ is a divisorial ideal of R, we see that p is a prime divisor of $I_{[\alpha^{-1}]}$ by [6, Proposition 1.10]. Since $a \pmod{I_{[\alpha^{-1}]}}$ is a non-zero divisor of $R/I_{[\alpha^{-1}]}$, we see that a is not in p. Therefore a is not in P. This implies that a - a is not in P because a is in P. Hence $a \in R/I_{[\alpha^{-1}]}$ is in A_P . This implies that $a \in R/I_{[\alpha^{-1}]}$ is in A_P . Therefore $a \in R/I_{[\alpha^{-1}]}$ is in A_P .

(2) The assertion (1) and Proposition 2 (2) show that $(\alpha-a)R[\alpha,\alpha^{-1}]\cap R=(\alpha-a)R[\alpha,\alpha^{-1}]\cap A\cap R=(\alpha-a)A\cap R=I_{[\alpha]}\varphi_{\alpha}(a)$. Q.E.D.

Proposition 5. Let R be a Noetherian domain and α an anti-integral element of degree d over R. Set $A=R[\alpha]$ and assume that A/R is a flat extension. Let a be an element of R such that a $(\text{mod }I_{[\alpha^{-1}]})$ is a non-zero divisor of $R/I_{[\alpha^{-1}]}$. Then $(\alpha-a)R[\alpha,\alpha^{-1}]\cap R=I_{[\alpha]}\varphi_{\alpha}(a)$.

Proof. Since A/R is a flat extension, we get $J_{[\alpha]} = R$ by [3, Proposition 2.6]. Hence α is a superprimitive element of degree d over R by [3, Theorem 1.12]. Let P be a prime divisor of αA . Then $\operatorname{depth} A_P = 1$ by [6, Proposition 1.10]. Flatness of A/R shows that $\operatorname{depth} R_p = 1$ where $p = P \cap R$. So we get the conclusion by Theorem 4.

Remark 6. Let R be a Noetherian domain and α a super-primitive element of degree d over R. Set $A = R[\alpha]$. Assume that A/R is LCM-stable. Let a be an element of R such that $a \pmod{I_{[\alpha^{-1}]}}$ is a non-zero divisor of $R/I_{[\alpha^{-1}]}$. Then $(\alpha - a)R[\alpha, \alpha^{-1}] \cap R = I_{[\alpha]}\varphi_{\alpha}(a)$.

Proof. Let P be a prime divisor of αA . Then depth $A_P=1$ by [6, Proposition 1.10]. Since A/R is LCM-stable, we know that depth $R_p=1$ where $p=P\cap R$ by [4, Lemma 1]. Therefore Theorem 4 (2) implies that $(\alpha-a)R[\alpha,\alpha^{-1}]\cap R=I_{[\alpha]}\varphi_{\alpha}(a)$. Q.E.D.

Next we will consider the contraction of an ideal $(a\alpha - 1)R[\alpha, \alpha^{-1}]$.

Lemma 7. Let R be a Noetherian domain and a an element of R. Then $(a\alpha - 1)R[\alpha, \alpha^{-1}] \cap R[\alpha] = (a\alpha - 1)R[\alpha]$.

Proof. Set $A = R[\alpha]$ and $B = R[\alpha, \alpha^{-1}]$. The inclusion $(a\alpha - 1)B \cap A \supset (a\alpha - 1)A$ is clear. We will prove the converse inclusion. Let c be an element of $(a\alpha - 1)B \cap A$. Then there exists an element b of B such that $c = (a\alpha - 1)b$. Let P be an element of $\mathrm{Dp}_1(A)$. If α is not in P, then $A_P = B_P$ and $(a\alpha - 1)b$ is in $(a\alpha - 1)B_P = (a\alpha - 1)A_P$. Hence $c/(a\alpha - 1)$ is in A_P . If α is in P, then $a\alpha - 1$ is not in P. Hence $c/(a\alpha - 1)$ is in A_P . This shows that $c/(a\alpha - 1)$ is in $\bigcap_{P \in \mathrm{Dp}_1(A)} A_P = A$. Hence we see that c is in $(a\alpha - 1)A$, and so $(a\alpha - 1)B \cap A \subset (a\alpha - 1)A$.

Prposition 8. Let R be a Noetherian domain and α an anti-integral element of degree $d \geq 2$ over R. Assume that $R[\alpha]/R$ is a flat extension. Let a be an elemet of R such that $\operatorname{grade}(I_{[\alpha]} \cap I_{[\alpha^{-1}]} + aR) > 1$. Then $(a\alpha - 1)R[\alpha] \cap R = I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$.

Proof. Set $A=R[\alpha]$. We will prove that $(a\alpha-1)A\cap R\supset I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$. Let b be an element of $I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$. We have only to prove that $b/(a\alpha-1)$ is in A. Let P be an element of $\mathrm{Dp}_1(A)$ and set $p=P\cap R$. Since A/R is a flat extension, we see that p is in $\mathrm{Dp}_1(R)$. Hence $p\not\supset I_{[\alpha]}\cap I_{[\alpha^{-1}]}$ or $p\not\ni a$ because $\mathrm{grade}(I_{[\alpha]}\cap I_{[\alpha^{-1}]}+aR)>1$. If $p\not\supset I_{[\alpha]}\cap I_{[\alpha^{-1}]}$, then both α and α^{-1} are integral over R_p by $[3, \operatorname{Corollary}\ 2.3]$. Hence $R_p[\alpha]=R_p[\alpha^{-1}]$ and α is a unit of $R_p[\alpha]$. Therefore $(\alpha^{-1}-a)A_p=(a\alpha-1)A_p$. Note that α^{-1} is an anti-integral element over R by $[1, \operatorname{Theorem}\ 6]$. Hence Proposition 2 (1) implies that $(\alpha^{-1}-a)A_p\cap R_p=I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)R_p$. Since b is in $I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)R_p$, we see that b is in $(a\alpha-1)A_p$, and so $b/(a\alpha-1)$ is in A_p . If $p\not\ni a$, then a is a unit of R_p . Proposition 2 (1) asserts that $(\alpha-a^{-1})A_p\cap R_p=I_{[\alpha]}\varphi_{\alpha}(a^{-1})R_p$. Besides, we have $a^dI_{[\alpha]}\varphi_{\alpha}(a^{-1})=I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$. Hence b is in $(\alpha-a^{-1})A_p=(a\alpha-1)A_p$, and so $b/(a\alpha-1)$ is in A_p . Therefore $b/(a\alpha-1)$ is in $\bigcap_{P\in \mathrm{Dp}_1(A)}A_P=A$. We will prove that $(a\alpha-1)A\cap R\subset I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$. Let c be an element of $(a\alpha-1)A\cap R$. Then $c/(a\alpha-1)$ is in A. Since $c/(\alpha^{-1}-a)=\alpha(c/(1-a\alpha))$, we know that $c/(\alpha^{-1}-a)$ is in A. Hence c is in $(\alpha^{-1}-a)A\cap R=I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$.

Theorem 9. Let R be a Noetherian domain and α an anti-integral element of degree $d \geq 2$ over R. Assume that $R[\alpha]/R$ is a flat extension. Let a be an element of R such that $\operatorname{grade}(I_{[\alpha]} \cap I_{[\alpha^{-1}]} + aR) > 1$. Then $(a\alpha - 1)R[\alpha, \alpha^{-1}] \cap R = I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(a)$.

Proof. By Lemma 7 we have $(a\alpha - 1)R[\alpha, \alpha^{-1}] \cap R[\alpha] = (a\alpha - 1)R[\alpha]$. Then Proposition 8 implies that $(a\alpha - 1)R[\alpha, \alpha^{-1}] \cap R = (a\alpha - 1)R[\alpha, \alpha^{-1}] \cap R = (a\alpha - 1)R[\alpha] \cap R = I_{[\alpha-1]}\varphi_{\alpha^{-1}}(a)$. Q.E.D.

References

- [1] M. Kanemitsu and K. Yoshida: Some properties of extensions $R[\alpha] \cap R[\alpha^{-1}]$ over Noetherian domains R, Comm. Algebra, 23 (1995), 4501-4507.
- [2] H. Matsumura: Commutative algebra (2nd ed.), Benjamin, New York, 1980.
- [3] S. Oda, J. Sato and K. Yoshida: High degree anti-integral extensions of Noetherian domains, Osaka J. Math., 30 No. 1 (1993), 119-135.

- [4] N. Onoda, T. Sugatani and K. Yoshida: Note on LCM-stability of simple extensions of Noetherian domains, Math. J. Toyama Univ., 21 (1998), 111-115.
 [5] J. Sato, S. Oda and K. Yoshida: Extensions R[α α] ∩ R[(α α)⁻¹] with an anti-integral element α are unchanged for any α ∈ R, preprint.
- [6] K. Yoshida: On birational-integral extension of rings and prime ideals of depth one, Japanese J. Math., 8 No. 1 (1982), 49-70.