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1. Introduction

Iterated Local Search (ILS) is one of the representative metaheuristics that indicate an algorithmic frame-
work based on enhancements of (simple) local search and greedy heuristics for combinatorial optimization
problems. This metaheuristic algorithm is often referred to as Parthenogenetic Algorithm (PA), com-
posed of a local search heuristic and a random mutation technique to escape from local optima found
by the local search. For example, for the traveling salesman problem (TSP), PA is one of the most
successful approximation algorithms, so-called Iterated Lin-Kernighan heuristic®), which is composed of
a Lin-Kernighan’s local search!®) and a random four-opt escape technique.

On the other hand, it is well known that the unconstrained binary quadratic programming problem
(BQP) is equivalent to many classical combinatorial optimization problems such as maximum cut prob-
lem, maximum clique problem, etc. See??) for more details. Given a symmetric rational n X n matrix Q
= (gi;), the objective of the BQP is to find a binary vector z of length n that maximizes the following
quantity:

n n
f(.’l:) = ZZqijzizj, T; € {0,1} Vi=1,...,n. (1)
i=1 j=1

Several exact methods have been developed to solve the BQP. However, the BQP belongs to the
class of N'P-hard problems as well as the related classical combinatorial optimization problems. Due
to the computational complexity of the problem, at the present time it is only capable of solving the
small size instances. For larger problem instances, such methods would become prohibitively expensive
to apply, whereas high-performance heuristic algorithms might find high-quality solutions in a short
time. To obtain near-optimal solutions in reasonable time, several metaheuristic approaches such as
tabu search® ), simulated annealing? 1), evolutionary algorithms!® 18: 12, 21) "5 scatter search!) have
been proposed for the BQP so far. Although these algorithms do not deliver a guarantee to find optimum
solutions, they have been shown to be highly effective in practice. In addition, the algorithms for the
BQP can be utilized to solve the related combinatorial optimization problems.

In this paper, we consider various PA implementations to the BQP. Each PA performs each of four
local search heuristics (deterministic -opt, randomized I-opt, deterministic k-opt, and randomized k-opt)
known for the BQP so far and has a simple mutation controlled by a probability parameter. To observe
behaviors of PAs induced by several parameter values used in the mutation, we test each PA on test
problem instances of up to 2500 variables from the literature and then choose the best algorithm from
these PAs. Computational results after this extensive testing indicate that search abilities of PAs with k-
opt local search are not as sensitive in the parameter values as PAs with 1-optlocal search. Furthermore,
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it turns out that the PA incorporating the randomized k-opt local search with the near-optimal parameter
value set for the mutation is superior or at least competitive to the other existing powerful metaheuristic
approaches, such as simulated annealing and genetic local search, on the same test instances.

2. Basic Idea of Parthenogenetic Algorithm

Local Search (LS) is a generally applicable approach that can be used to find approximate solutions to
hard optimization problems, and many powerful heuristics that belong to a class of metaheuristics are
based on it. The basic idea of the LS is to start from a randomly generated solution z and to repeatedly
replace = with a better cost chosen from a set of neighbor solutions z' that can be reached by a slight
modification of a current solution. If no better neighbor solutions can be found, the LS immediately
stops and finally returns to the best solution found during the search. Thus, the resulting solution cannot
be improved by a slight modification. This modification is often referred to as neighborhood N, and the
resulting solution is called the locally optimal solution under the neighborhood N. The quality of the
locally optimal solution found by the LS heuristic substantially depends on a structure of the predefined
neighborhood.

LS can be trapped in local optima and be unable to reach the global optima. To reach the global
optimum or very good approximate solutions, LS process should be enlarged in some sense. One of
such enlargements is a multi-start technique of LS that starts from random solutions and may promise
a satisfactory solution with a larger amount of computation time. However, the use of relatively good
(or previously found) solutions rather than randomly generated ones is a more natural way in applying
LS itself. Better final solutions can be expected even with the same amount of computation times for
each of the multi-start LS (MLS) and the following algorithm.

Among the powerful heuristic algorithms using previously found solutions with relatively good costs,
Parthenogenetic Algorithm (PA) or Iterated Local Search may be one of the simplest methods that
enhance the LS for various optimization problems. Generally, the PA first generates a random solution,
and then the solution (or mutated solution, see below) is locally optimized by the LS heuristic, obtaining
a locally optimal solution. The locally optimal solution (or previously found one) is slightly mutated
by a mutation technique, obtaining a mutated solution that is not locally optimal with respect to
neighborhood definitions of the LS heuristics. These processes, except for initial generation of a random
solution in the first step, are repeated until a predefined terminal condition is satisfied. Thus, the PA
can be simply composed of a local search and a mutation (kick) to escape from previously found local
optima. This idea lies in focusing the search not on the full space of solutions but on a smaller subspace
defined by locally optimal solutions.

To get out the local optimality of the local optimum solution, the PA requires a mutation (kick)
technique that produces the other (worse) solution from the given local optimum. The kick technique
may be considered as a kind of neighborhoods, and we usually require the other neighborhood structure
that differs from one used in the LS of the PA. If we adopt the same (or quite similar) neighborhood
structure in both the LS and the kick technique (e.g., I-opt neighborhood for the BQP, see §3.3 for more
details), the same local optimum would be reproduced by LS that starts from a newly mutated solution
after the kick with the same neighborhood. In such case, we can not expect that PA provides very good
solutions or better ones than even the best one found by MLS that performs LS starting with newly and
randomly generated points.

Let us turn to optimization problems briefly. The PA should be applied to a problem characterized
by the following assumption (or fact): “there are good (local optimum) solutions around the other good
(local optimum) one in a search space of the given problem”. Such assumption implies that in the search
space many local optima found by LS are distributed in a cluster. For such optimization problem, e.g.,
the TSP and graph partitioning problem (GPP)3), it is quite expected that the PA is more favorable in
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PA 1

1 Generate a random solution, and run a local search on the solution, obtaining . Copy z to Tpes.
2 Perform a random mutation on z, obtaining z’.

3 Run the local search on z/, obtaining z'.

4 If f(2") > f(Tpest), then set Tpesr = . Copy Tpes: tO .

5 If a predefined terminal condition is met, then output ey, otherwise go to Step2.

Figure 1 = The flow of Parthenogenetic Algorithm 1

PA 2

1 Generate a random solution, and run a local search on the solution, obtaining . Copy z to Tpest.
2 Perform a random mutation on z, obtaining z’.

3 Run the local search on z/, obtaining z'’.

4 If f(z") > f(Tpest), then set Tpeor = z''. Copy z”’ to z.

5 If a predefined terminal condition is met, then output zpes¢, otherwise go to Step2.

Figure 2  The flow of Parthenogenetic Algorithm 2

terms of final solution qualities and running times than the MLS. The BQP in this paper also can be
considered as such a problem??: 21),

3. Parthenogenetic Algorithm for BQP

3.1 Fitness and Representation
When applying PAs to a specific problem, it is important to determine the fitness function and the
representation. For the BQP, Eq. (1) can be used as the fitness function.

On the other hand, 0-1 binary representation is an obvious choice for the BQP since it represents the
underlying 0-1 integer variables. In a bit string of length n, where n is the number of variables in a given
BQP instance, a value of 0 or 1 at the j-th bit implies that z; = 0 or 1 in the individual used in the PA,
respectively.

3.2 PAs for BQP

We mainly consider two types of PAs for the BQP, but each of four local search heuristics is incorporated
into each type of PAs. The two main PA’s flows are shown in Fig.1 and Fig.2, and we here refer to each
of them as PA1 and PA2, respectively. The difference between PA1 and PA2 shown is only a final process
in Line 4 of each figure. This means that in each iteration the solutions given for a random mutation
in Line 2 of each figure are different. In PA1 shown in Fig.1, the best found solution zj., is always
used in Line 2 since Tps: is copied to a current solution z in Line 4. In PA2, for each iteration, the
currently found solution z (that is " in Line 4) rather than the best found one is always used in Line 2
of Fig.2. Generally, PA1 can be interpreted as the standard PA due to Johnson® who has presented the
powerful heuristic so-called Iterated Lin-Kernighan for the TSP. However, the alternative flow of PA2 is
also investigated due to the first PA implementations to the BQP.

As other existing PAs, there is a Large Step Markov Chain (LSMC) (or Chained Local Optimization
(CLO))!" 2). This PA operates on a solution in Line 2 that is chosen by an idea based on a simulated
annealing. If a parameter temperature in LSMC is set to zero, LSMC becomes the same as PA1 in our
study. On the other hand, if the temperature is set to a fixed large value so as to always accept the
solution found by local search in each iteration, it is equivalent to PA2. Alternatively, a novel heuristic
called Genetic Iterated Local Search (GILS) can be found in'®). GILS aperates on two solutions in Line
2: the best found solution corresponds to the one in Line 2 of Fig.1 and the current solution corresponds
to the one in Line 2 of Fig.2. These PA variants will be future issues. In the following, local search
heuristics and random mutation are described to achieve our simple PAs for the BQP.
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3.3 Local Search Algorithms

To incorporate a local search into the PAs provided above, we show four local search heuristics for the
BQP. They have been clearly stated in the recent literatures and each of their performances in terms
of solution qualities and running speeds has been practically confirmed under an implementation of the
multi-start technique with each local search. Thus, we describe here each feature of these local search
mechanisms.

Four local search heuristics for the BQP may be categorized by two neighborhood classes: 1-opt
neighborhood and k-opt neighborhood. In the BQP, since a solution z to the problem is a binary vector
of fixed length n, the simplest form is the I-opt neighborhood, i.e., 1-opt neighbor solution is reached by
flipping a single bit in a current solution. Therefore, the Hamming distance ! dg between the current
solution z and the 1-opt neighbor solution z’ is one, dg(z,z') = 1. The local search that has the I -opt
neighborhood for the BQP is called the I-opt local search. It searches new solutions with better cost in
the I-opt neighbor solutions that can be reached by flipping a single bit of the current solution in each
step and the search is performed until no improved neighbor solution is found.

On the other hand, the k-opt neighborhood for the BQP can be extended from the 1 -opt one. The
k-opt local search heuristic for the BQP was first presented by Merz and Freisleben!?) that was based
on well-known ideas used in Lin-Kernighan algorithm for the TSP!%) and Kernighan-Lin algorithm for
the GPP!4). The basic idea of the heuristic is to find a solution by flipping a variable number of k
bits in the solution vector per iteration. In each step, a sequence of n solutions is generated by flipping
the bit with the highest associated gain. The best solution in the sequence is accepted as the new
solution for the next iteration. In the k-opt local search, the best solution found in each iteration can be
interpreted as the k-opt neighbor solution. The search is performed until no better new k-opt solution is
found. Therefore, the Hamming distance dy between a current solution z and a resulting k-opt neighbor
solution z' depends on a variable number k.

Both neighborhoods are further divided into deterministic and randomized versions that are charac-
terized by two move strategies: best improvement and first improvement. In the BQP, the deterministic
1-0pt*8: 19:20) and k-opt!® 20) local search heuristics have been presented by Merz et al. In both deter-
ministic heuristics, new solutions are found by always flipping the bits with the highest gain value by the
best improvement move strategy. In the k-opt, roughly speaking, the I-opt with the best improvement is
performed with a tabu fashion to achieve a variable k-opt neighbor solution. The others, the randomized
1-0pt')) and k-opt'? 13) local search heuristics have been presented by ourselves. The randomized I-opt
local. search randomly finds new solutions with good (positive) gain value by the first improvement in a
fixed number of iterations (< n). The randomized k-opt local search finds a new better k-opt neighbor
solution reached by a combination of the randomized 1-opt and deterministic k-opt neighborhoods in
each iteration. In this combination, the first improvement I-opt is executed before the highest gain
found by the best improvement -opt with the tabu fashion, which is a part of the deterministic k-opt,
is negative. The search conducted by the randomized I1-opt neighborhood in this k-opt local search
contributes to oscillations that are performed so as to randomly move to gainful solutions with positive
gain values before temporarily moving to tentative solutions with negative gains. More details can be
found inlls 12 18, 18, 19, 20)

When performing two multi-start methods of I-opt and k-opt local searches that start from random
solutions, each result obtained by each of the randomized versions (randomized 1-opt and k-opt) is
superior to each of the deterministic versions (deterministic 1-opt and k-opt), respectively, in terms of
resulting solution qualities on average for the test instances ranging from medium size (500 variables) to
large size (2500 variables)!'s 13). Tt is also confirmed that in a comparison of both 1-opt local searches (or
both k-opt local searches), each of both running times consumed by two I-opt (or two k-opt) is almost

!The Hamming distance between the binary vectors v = {u1,u2,...,un} and v = {v1,vz,...,v,} is the indices i such
that 1 <4 < n and u; # v;, where n is a length of the vectors. We denote the Hamming distance by dg(u,v).
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the same when starting from random solutions.

3.4 Random Mutation

The mutation in the PA is interpreted as one neighborhood to generate (or transform) a new solution
that is not a local optimum (with a worse cost) from locally optimal solution found by local search. In
other words, it is a technique to kick a local search solution, that is, to perturb it slightly.

In the TSP, for example, one of the mutation techniques used very often in the PA is a random 4-opt
move (or non-sequence 4-change, double-bridge)!> ® 172, The mutation for the TSP is very useful in
that it is possible to generate a suitable initial solution that can be given even for the powerful Lin-
Kernighan’s local search and it can be expected that the powerful heuristic starting from such solution
produces the other local optimum which is different with the solution before the mutation performed
previously. Hong et al. ® have investigated suitable edge numbers in the kick that are exchanged
to generate a suitable initial solution for well-known TSP local searches. They have reported that
the suitable edge numbers depended on types of local search heuristics and TSP instances after the
investigation that, for each of given instances, the edges ranging from 2 to 50 were randomly exchanged
for the local search solutions.

Such investigations are not yet conducted for the BQP. Therefore, ones as in® may be required for
the first study of the PA to the BQP, since the useful mutation in the TSP is impossible to apply to the
problem considered here.

To achieve such investigations for the PAs to the BQP, we perform a random mutation that flips bits
randomly chosen in a given locally optimal solution and generates a new solution which is an initial
solution for the next local search process in the PA. A number r of the bits to be flipped is defined by
r = nxprmt, where n denotes a number of variables of a given instance size and prmt (0 < prmt < 1) is
a probability parameter for determining the number of the bits to be randomly flipped. For each of the
BQP instances investigated in the following experiment, we test several parameter values to show which
is the most suitable in the PAs. We set prmt € { 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 }. The 20 parameter values in the 0.01 to 0.95 range mean
to flip the bits ranging from 1% to 95% for the given solution of length n. Given an instance of 1000
variables and if prmt is set to 0.1, for example, 100 bits (= 1000 * 0.1) are randomly chosen from the
solution of length 1000, and these 100 bits chosen are all flipped to generate the new solution. Thus,
dH (Tnew Tota) = 100, where Tpe,, is the new solution and z,4 is the given solution.

4. Computational Results
Here, two experiments are mainly conducted. The aim of the first experiment is to compare several
PAs and to observe behaviors of the random mutation controlled by probability parameter values. The
second experiment is to show the search performance of the PA, which is the most promising algorithm
chosen from the first one, in order to compare with the other existing metaheuristics for the BQP.

For the experiments, it may be convenient to name each of several PAs. There are 8 candidates of the
PAs and the entries are listed as follows.

PA1-D1-opt — PA1 with the deterministic 1-opt local search (see Fig.1 for details of the PA1)
PA1-Rl-opt — PA1 with the randomized 1-opt

PA1-Dk-opt — PA1 with the deterministic k-opt

PA1-Rk-opt — PA1 with the randomized k-opt

PA2-D1-opt — PA2 with the deterministic 1-opt local search (see Fig.2 for details of the PA2)
PA2-R1-opt — PA2 with the randomized 1-opt

PA2-Dk-opt — PA2 with the deterministic k-opt

PA2-Rk-opt — PA2 with the randomized k-opt

® 6 060 00 0 o

4.1 Results of the First Experiment
In the first experiment, we consider four of the BQP’s test instances with varied densities and problem
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Table 1  Information of test problem instances
instance bkv n  dens(Q)) Ref
glov500-4 172771 500 075  ©3)
kb-g09 262658 1000 0.9 N1
beas1000-8 351994 1000 0.1 4)3)
beas2500-2 1471392 2500 0.1 4)3)
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(a) glov500-4 (b) beas2500-2

Figure 3  Results of eight PAs for average quality versus mutation parameter values

size ranging from 500 to 2500 variables from the literature. The four test instances chosen as one from
each of four problem sets are glov500-4, kb-g09, beas1000-8 and beas2500-2, which are known to
be relatively hard to solve. In Table 1, these instances are listed with the best-known value (bkv), the
problem size n, where n denotes a number of variables, matrix Q density (dens(Q)), where dens(Q)
is defined as the number of non-zero entries divided by the number of total entries in the matrix, and
references that previously used each instance or a library we can take the instance. Other information
of each problem set is given in the next subsection.

We imposed a time limit of PA running according to each of the problem sizes: 10 seconds for 500
variable instance (i.e., glov500-4), 30 seconds for 1000 variable instances (i.e., kb-g09 and beas1000-8)
and 60 seconds for 2500 variable instance (i.e., beas2500-2), on a Sun Ultra 5/10 (UltraSPARC-IIi
440MHz). Each of eight PAs was run 30 times with each of prmt values for each instance. An initial
solution for each run of the algorithm was randomly generated with a different random seed. All the PA
heuristics were implemented in C.

Figure 3 reports overall comparison results of eight PAs on the instances: (a) glov500-4 and (b)
beas2500-2 (The results of kb-g09 and beas1000-8 instances were omitted since we observed almost
the same behaviors with (a) and (b) in Fig. 3). For each of (a) and (b), the vertical line shows average
quality (%) that is the average percentage excess over the best-known solution value and the horizontal
line denotes prmt value. Here, we observe the behaviors of how the final solutions obtained by the PAs
change when the prmt value is changed. In all the results in this experiment, interesting behaviors are
observed in eight PAs: average qualities of solutions finally obtained by PAs with k-opt are not sensitive
even if the mutation parameter values are increased, but in cases of PAs with I-opt, the qualities are
gradually inferior. From the behavior of the PAs with 1-opt, we note that it is difficult to confidently
choose the best value of the parameters for obtaining final good solutions. In comparison of two types
of PAs with each k-opt, PA2 type algorithms seem to obtain better solutions than another type PA1 in
most cases. In addition, these better solutions by PA2 are found from relatively smaller values of the
parameter without depending on problem size, although it seems that the most promising prmt value
depends on a type of the local search heuristics and others (problem densities). This tendency in each
of PA2 type algorithms with k-opt may be good in that we set confidently the parameter values.
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From the results shown in the figures, we choose the best algorithm among the eight PAs in order to
show performances of the best algorithm in the next experiment. The criteria to choose it are as follows.
1) an algorithm among the PAs obtains the highest-quality solutions and 2) the mutation parameter
value prmt should be small. The first criterion is quite natural in that the high-quality solutions should
be always required. For the second one, since a larger value of prmt causes expensive computational
tasks of local search to reach local optimum in each iteration of the PA, it may be necessary to use
a small value rather than a larger one, if good solutions are obtained with the small value. From the
criteria provided above, we recommend PA2-Rk-opt algorithm because the algorithm has obtained the
best result among them and the best result was always obtained when prmt is a relatively small value
for each instance tested. In addition, a range of the small values is almost the same without depending
on problem sizes, i.e., it shows to be robust, but it seems that the near-optimal value of prmt depends
on the problem densities.

Our recommended prmt values for PA2-Rk-opt are as follows: without depending on the problem size
n, for lower density problems we simply recommend prmt = 0.05 up to 0.15, and for higher density
problems prmt = 0.15 up to 0.25. From these, we also recommend for the middle density problem prmt
= 0.1 up to 0.2. These are near-optimal values for PA2-Rk-opt, not optimal. Note that these values
are substantially acquired to only the instances considered here. Therefore, it is difficult to justify the
values to all problem instances of the BQP. However, we consider that they may be used as one standard
near-optimal value for other instances with corresponding densities.

4.2 Results of the Second Experiment

To show empirical performances of the best PA for many test problem instances from the literature, we
test PA2-Rk-opt with near-optimal value of mutation chosen from the results of the previous experi-
ment. A number of the instances considered here are 35 in each problem set considered in the previous
experiment: 5 instances from glov500 set and 30 instances from each of kb-g, beas1000 and beas2500.
Five instances in the first set glov500 are with n = 500 and a density dens(Q) of the instance in the
set are between 0.1 and 1.0. Ten instances of kb-g are with n = 1000 and dens(Q) varied between 0.1
and 1.0. Last 20 instances: beas1000 and beas2500 are with 1000 and 2500 variables, and each of the
sets consists of 10 instances. Each density of the 20 instances is 0.1. According to such density infor-
mation and our recommended value shown above, prmt values used in PA2-Rk-opt are set as follows:
prmt = 0.05 for glov500-1, kb-g01—kb-g02, and all beas1000 and beas2500 instances, prmt = 0.1
for glov500-2, glov500-3 and kb-g03—kb-g07 instances, and prmt = 0.15 for glov500-4, glov500-5
and kb-g08—kb-g10 instances.

For the PA running in this experiment, a time limit is also imposed on the same computer used above,
but a larger time limit was set because the relatively large running times have been permitted in the
previously reported results of the powerful metaheuristics. Our setting of the time limit depends on the
problem size: 30(s) for the instances with n = 500, 60(s) for the instances with n = 1000 and 360(s) for
the instances with n = 2500. These setting are the same as that in!?).

Table 2 summarizes the results of PA2-Rk-opt for the 35 instances. 30 runs were performed and the
running times to reach the best-known solutions were recorded. If the best-known solution could not
be found for each run, the run was performed until the time limit described above was reached. In this
table, the best found solution “best”, the average final solution “avg.”, the number of times in which the
best-known solution could be found “b/30”, and the average running time “t1” in seconds in the case
which the PA could find the best-known solution, were provided.

From Table 2, it is observed that the best PA, PA2-Rk-opt, was capable of finding the best-known
solution with high frequency in the predefined time limit (see the column denoted “b/30”), except for
kb-g instances with high densities. For particularly kb-g09 and kb-g10, it appears to be relatively hard
to find the best-known solution by the PA, since the numbers of “b/30” are less than 10. On the other
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Table 2  Parthenogenetic Algorithm incorporating randomized k-opt local search (PA2-Rk-opt) for glov500,
kb-g, beas1000 and beas2500 instances

BQP PA2-Rk-opt
instance best avg. (%) b/30  tl1(s)
glov500-1 61194  61194.0 (0.00000) 30 0.1
g1ov500-2 100161  100161.0 (0.00000) 30 0.2
glov500-3 138035  138035.0 (0.00000) 30 0.6
glov500-4 172771 172771.0 (0.00000) 30 6.4
glov500-5 190507 190507.0 (0.00000) 30 5.6
kb-g01 131456 131456.0 (0.00000) 30 8.7
kb-g02 172788 172788.0 (0.00000) 30 8.7
kb-g03 192565 192565.0 (0.00000) 30 1.0
kb-g04 215679  215584.5 (0.04383) 25 23.8
kb-g05 242367  242367.0 (0.00000) 30 2.6
kb-g06 243293  243291.0 (0.00081) 29 19.1
kb-g07 253590  253432.6 (0.06209) 18 16.8
Kkb-g08 264268  264220.3 (0.01805) 19  19.0
kb-g09 262658  262488.1 (0.06473) 8

kb-g10 274375  274256.5 (0.04321) 5

beas1000-1 371438  371438.0 (0.00000) 30
beas1000-2 354932  354932.0 (0.00000) 30
beas1000-3 371236  371236.0 (0.00000) 30
beas1000-4 370675  370675.0 (0.00000) 30
beas1000-5 352760  352760.0 (0.00000) 30
beas1000-6 359629  359629.0 (0.00000) 30
beas1000-7 371193  371193.0 (0.00000) 30
beas1000-8 351994  351990.3 (0.00106) 29
beas1000-9 349337  349254.5 (0.02362) 25
beas1000-10 351415  351415.0 (0.00000) 30
beas2500-1 1515944  1515944.0 (0.00000) 30 13.9
beas2600-2 1471392  1471392.0 (0.00000) 30 89.5
beas2600-3 1414192  1414156.4 (0.00252) 26 88.5
beas2600-4 1507701  1507701.0 (0.00000) 30 7.0
beas2500-5 1491816  1491816.0 (0.00000) 30 14.9
beas2500-6 1469162  1469162.0 (0.00000) 30 30.1
beas2500-7 1479040  1479039.9 (0.00001) 29 93.1
beas2500-8 1484199  1484199.0 (0.00000) 30 35.0
beas2500-9 1482413  1482412.2 (0.00005) 28 109.1
beas2600-10 | 1483355 1483355.0 (0.00000) 30 85.9

UGN L
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Table 3  Previous results of alternative heuristics: genetic local search (GLS-KTN) by Katayama, Tani, and
Narihisa, simulated annealing (SA-KN) by Katayama and Narihisa, genetic local search (GLS-MF) by Merz
and Freisleben, tabu search (TS-B) and simulated annealing (SA-B) by Beasley for beas2500 instances

BQP GLS-KTN!2) SA-KN11) GLS-MF!8) TS-BY) | sa-BY)
instance avg.(b/30) tl(s) t2(s) avg.(b/30)  t(s) avg.  t(s) best best
beas2500-1 | 1515944.0 (30) 32 — | 1515828.9 (9) 15.1 | 1514804.6 1200 | 1514971 | 1515011
beas2500-2 | 1471195.1 (13) 215 360 | 1470600.9 (1) 15.2 | 1469721.0 1200 | 1468694 | 1468850
beas2500-3 | 1414111.9 (21) 117 360 | 1413657.1 (8) 15.1 | 1412943.0 1200 | 1410721 | 1413083
beas2500-4 | 1507701.0 (30) 22 — | 1507630.3 (21) 14.6 | 1507674.2 1200 | 1506242 | 1506943
beas2500-5 | 1491816.0 (30) 51 — | 1491692.8 (6) 15.2 | 1491623.4 1200 | 1491796 | 1491465
beas2500-6 | 1469162.0 (30) 52 — | 1468810.3 (5) 15.3 | 1467918.2 1200 | 1467700 | 1468427

2)

6)

1)

1)

(
beas2600-7 1479038.8 (29) 117 360 1478397.4 ( 15.4 | 1477101.7 1200 | 1476059 | 1478654
beas2500-8 1484197.1 (25) 86 360 1483907.9 ( 15.0 | 1483226.9 1200 | 1484199 | 1482953
beas2500-9 1482411.3 (27) 176 360 1482192.0 ( 15.1 | 1481622.9 1200 | 1482306 | 1481834
beas2500-10 | 1483172.8 (16) 178 360 1482522.4 (

15.4 | 1481899.2 1200 | 1482354 | 1482166

hand, for the instances with lower densities such as beas1000 and beas2500 instances with dens(Q) =
0.1, it seems that the PA with prmt = 0.05 provided satisfactory solutions in reasonable running times.

To compare our best PA with the other metaheuristics, we provide several results of the alternative
heuristics. Table 3 displays the results of the metaheuristics previously reported by others and us. The
heuristics are two genetic local search (GLS), two simulated annealing (SA), and a tabu search (TS),
and have been tested on large test instances of up to 2500 variables contained in ORLIB?®), except the
set of kb-g.

The previous results for only 2500 variable instances are shown in Table 3. GLS-KTN!2?) incorporates
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the randomized k-opt. For GLS-KTN, 30 runs were performed and the running times to reach the best-
known solutions were recorded. If the best-known solution could not be found for each run, the run
was performed until the time limit of 360(s) was reached. In this table, for GLS-KTN, the average final
solution “avg.”, the number of times in which the best-known solution could be found “(b/30)”, the
average running time “t1” in seconds in the case which the GLS could find the best-known solution, and
the time limit “t2” in seconds except for the case which the GLS could find the best-known solution,
were provided. The GLS-KTN was performed on the same computer used above, Sun Ultra 5/10. For
SA-KN!1), the average final solution in 30 runs “avg.”, “(b/30)” and the average running times in
seconds which were required by SA-KN on the Sun Ultra 5/10, were provided. In other results by other
researchers, for GLS-MF!8) incorporating the deterministic I-opt local search, the average final solution
in 30 runs was provided for each instance. Their GLS was performed until 1,200(s) for each of beas2500
was reached on Pentium II PC (300MHz). For TS-B and SA-B, in the study®, Beasley provided the best
result for each instance. These algorithms (TS-B and SA-B) for each instance of the set beas2500 has
consumed about 14 hours and 17 hours on Silicon Graphics (R4000 CPU with 100MHz), respectively.

When comparing both the results of PA2-Rk-opt for the beas2500 set in Table 2 and GLS-KTN for
the same set that may be one of the best heuristics for solving the BQP, it is clear that a number of
“b/30” by the PA for each instance is better or at least competitive to GLS-KTN or others. In addition,
the running times to find the best-known solution is relatively fast in comparison to SA-KN, which is one
of the fastest heuristics for finding the best-known solution, particularly for beas2500-1, beas2500-4,
etc. Note again that both results of PA2-Rk-opt and SA-KN (and GLS-KTN) have been obtained on
the same computational circumstance.

5. Conclusion

This paper have attempted to design several Parthenogenetic Algorithms, which are simple enhance-
ments of local search methods, for the unconstrained binary quadratic programming problems (BQP).
We demonstrated the search ability of the most promising PA, after an extensive testing of the muta-
tion parameter values. Finally, we showed that the best PA —the PA2 framework incorporating the
randomized k-opt local search (PA2-Rk-opt)— is one of the most powerful metaheuristics for the large
BQP benchmark instances.
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