THE BULLETIN OF OKAYAMA UNIVERSITY OF SCIENCE No.37 A pp.97-105 (2001)

Parallel and Distributed Classification using

Ensemble Self-Generating Neural Networks

Hirotaka INOUE and Hiroyuki NARIHISA*

Graduate school of Engineering,
Okayama University of Science,
1-1 Ridai-cho, Okayama 700-0005, Japan.
* Department of Information and Computer Engineering,
Okayama University of Science,
1-1 Ridai-cho, Okayama 700-0005, Japan.

(Received November 1, 2001)

Abstract

In this paper, we present both improving capability of the accuracy and parallel efficiency of en-
semble self-generating neural networks (ESGNNSs) for classification on a MIMD parallel computer. Self-
generating neural networks (SGNNs) are originally proposed on adopting to classification or clustering
by automatic constructing self-generating neural trees (SGNTs) from the given training data. ESGNNs
are composed of plural SGNTs each of which is independently generated by shuffling the orders of the
given training data, and the output of ESGNNs is computed as the average of all SGNT’s outputs. We
allocate each of SGNTSs to each of processors in the MIMD parallel computer. Experimental results show
that the parallel model of ESGNNs improves the classification accuracy than the single SGNNs, goes on
maintaining the high speed property of the single SGNNs.

1. Introduction

Neural networks have been widely used in the field of intelligent information processing such as
classification, clustering, prediction, and recognition. Generally, for application of these neural networks,
it is necessary to determine network structure and some parameters by human experts. It is quite tricky
to choose the right network structure suitable for a particular application at hand. Concerning the design
of the network structure, the following must be decided, (i) the number of the network layers, (ii) the
number of the neurons of each layer, (iii) the weights on connection between consequent layers. During
learning iterations, the weights on connections of the given networks are updated so as to converge to
the target value conserving the initially decided static network structure. Obtaining the right structure
of each network is the most important factor in learning and also the most difficult problem in the design
of neural networks.

In order to avoid these tricky and difficult situations, an attention is focused on SGNNs because
of their simplicity on networks design!?. SGNNs are some kinds of extension of the self-organizing
maps (SOMs) of Kohonen® and utilize the competitive learning algorithm which is implemented as
self-generating neural tree.

The SGNT algorithm is proposed 'V to automatically generate a neural tree directly from training
data. In our previous study concerning the performance analysis of the SGNT algorithm?, we showed
that the main characteristic of this SGNT algorithm was its high speed convergence in computation time
but it was always not the best algorithm in its accuracy comparing with the existing other feed-forward
neural networks such as the backpropagation (BP)%.

98 Hirotaka Inoue and Hiroyuki Nariuisa

In order to improve the generalization capability of SGNNs, we proposed ensemble self-generating
neural networks (ESGNNs) for classification®. ESGNNs are applied to the ensemble averaging® of SGNNs
and fully utilized the high speed convergence characteristic of the SGNT algorithm. Although ESGNNs
improve a classification accuracy by using various SGNTs, the computation time and the memory capacity
increase in proportion to increase in number of SGNTs.

The method of ESGNN has been studied by many researchers of Al and neural networks. Breiman
proposed bagging predictors to improve the accuracy of CARTY and investigated the bagging performance
on CART and other methods for classification and regression problems®. Since the ensemble learning is a
variance-reduction technique, it is well-known that the ensemble learning tends to work well for methods
with high variance such as neural networks and tree-based methods.

In this paper, we present the improving capability of the accuracy and the parallel efficiency of
ESGNNs for classification on a MIMD parallel computer. We apply ESGNNs to standard classification
problems of MONK's!?), Cancer®, and Card®, which are given as benchmark problems.

2. Self-Generating Neural Networks

SGNNs are defined as a tree construction problem how to construct a tree structure from the given
data which consist of multiple attributes under the condition that leaf neurons correspond to the given
data. Before we describe the SGNT algorithm, we denote some notations.

e input data vector : e;; e; = (e;1, €52,. .. ,€ip), ik means the k-th attribute of e;.
e j-th neuron : nj; n; is expressed as ordered pair (wj,c;).

e weight vector of n; : wj; w; = (wj1,wj2,...,wjp).

e the number of the leaf neurons in n; : ¢;.

e tree is expressed as ordered pair ({n;}, {lx}), where {n;} is the neuron set and {Ix} is the link set
of the tree.

distance measure : d(e;, w;); we use Euclidean distance measure.
e winner neuron for €; : Nqyin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of the SGNT algorithm
is given in Figure 1.

In the SGNT algorithm, some sub procedures are used. Table 1 shows the sub procedures of the
SGNT algorithm and their specifications.
A weight wjj of a neuron n; is updated as follows:

Wik = Wik + - (e — wjk), (1)

1
Cj-l-l

Tablel Sub procedures of the SGNT algorithm
Sub procedure Specification
copy(nj, e;/wyin) Createn;, w; — €;/Wyin.
distance(e;, w;) Compute d(e;, w;).
choose(e;,n1) Decide ny,;n for e;.
leaf(nwin) Check nin Whether n,;y, is leaf or not.
connect(n;,Nyin) Connect n; as child of nyin.
update(e;, w;) Update w; of n;.

Parallel and Distributed Classification using Ensemble Self-Generating Neural Networks 99

Algorithm (SGNT generation) :
Input :
e A set of training examples £ = {e;},i=1,...,N.

e A threshold value § > 0.

e A distance measure d(e;, w;).

Method :

1 copy(n1,e1);

2 for (i=2,j=2i < N;i++) {
3 nNywin = choose(e;,n1);
4 minDistance = distance(e;, Wyin);
5 if (minDistance > §) {
6 if (leaf(nwin)) {
7 copy(ny, Wuin);
8 connect(nj, Nyin);
9

i++
10
1 copy(nj, €;);
12 connect(nj, Nwin);
13 i+ +;
14
15 update(e;, Wyin)
16 }

Output : Constructed SGNT by E.

Fig.1 SGNT generation algorithm.

here, k is from 1 to p.

After all input data are inserted into the SGNT as its leaf neurons, the weights of each node neuron n;
are the averages of the corresponding weights of all its children. Whole SGNT reflects the given feature
space by its topology. A winner leaf neuron n,;, has the class information as a network output oyin.

In the testing process, the test data set T', which consists of data {(z;,y:), = 1,..., M}, where x;
is the input vector , y; is the corresponding output label, and M is the number of test data, is entered
the root neuron of the SGNT.

Then the input data are reached one of the winner leaf neurons ny;, of the SGNT through competition,
and the desired output ¥; is compared with the network output o, in order to evaluate the accuracy
of the SGNT. Note that though the competitive learning of the training process is performed between a
parent and its children recursively, the competitive learning of the testing process is performed among
only children recursively.

3. Ensemble Self-Generating Neural Networks

Though SGNNs have an ability of the fast learning and an applicability of large scale problems, the
accuracy is not so good as feed-forward networks which are implemented as a supervised learning method
such as BP. In order to acquire more higher performance from given training data, we consider the
ensemble averaging of K SGNTs.

The structure of the SGNT dynamically changes in training. The SGNT algorithm decides the
structure of the SGNT after all training data are added to the SGNT. A different structure of the SGNT
is generated by changing the input order of the training data.

ESGNNs employ not only bootstrap sampling but shuffling the training data to use all training data
exactly. ESGNNs can be separated into a training process and a testing process. In the training process,
we define “shuffler” to shuffle a set of training data D. Figure 2 shows the structure of the ensemble
system including K SGNTs in the training process. The set of all training data D enters each SGNN
through each shuffler. The shuffler makes shuffle elements of D at random. All SGNTSs are generated by
adopting the SGNT algorithm. After training process, various SGNTs are generated independently. We

100 Hirotaka Inoue and Hiroyuki Narisisa

SGNN 1 SGNN 2 SGNN K

Fig.2 ESGNNs which are constructed from K SGNTs (training process). One expert corresponds to one
SGNT, the shuffler makes shuffle elements of input data

Fig.3 The structure of ESGNNs (testing process)

call a SGNN “expert” in the ensemble system.

In the testing process, the set of test data T enters an ensemble model. Figure 3 shows the structure
of the ensemble system including K SGNTs in the testing process. Each output vector o, € IRM, where
R is a real number, denotes the output of the expert k for the set of test data T. The output of this
ensemble model is computed by averaging the each expert output as follows:

L
o=?kz=:lok. (2)

This ensemble model can obtain more sensitive classification than a single SGNN because of its
estimation capability of the unknown true probability density. This means improvement of an accuracy
of the classification.

In this paper, we adopt the ensemble model to binary classification problems. In order to classify

each test data, corresponding output 0;(i = 1,..., M) is evaluated as follows:
0; > 0.5 : Classl,
0; < 0.5 : Class0,
0<o0; <1. (3)

4. Parallel and Distributed Classification

Since each expert make training and test independently, the ESGNNs model has possibility of parallel
computation in the training process and the testing process. Hence, we allocate each of experts to each
of processors on the MIMD computer. The procedure of the parallelization of ESGNNs is presented as
follows:

Parallel and Distributed Classification using Ensemble Self-Generating Neural Networks 101

T Training phase Testing phase ’ P

!

bt Parallel process °k

————
Time

Fig.4 Parallelization of ESGNNs. Horizontal lines are the processors on MIMD parallel computer

Stepl: In a master processor, read the training set D and the test set T in the disk.
Step2: In the master processor, broadcast D and T for all K — 1 slave processors.

Step3: In all processors, generate the SGNT from D, then test the SGNT using T, and compute the oy
independently.”

Step4: In all processors, each output oy for T is collected in the master processor by all-to-one commu-
nication.

Step5: In the master processor, compute o by Eq. (2) and write to the disk.

Because the number of the communications between the master processor and each slave processor is
only two times (Step2 and Step4), the parallel efficiency is approximately expected the linear speedup (See
Figure 4). In our case, all computations are performed on the Intel Paragon (Paragon XP/S15). This is a
distributed memory multicomputer, and the architecture is multiple instruction multiple data (MIMD).
The Paragon we use has 296 processors. Each processor is Intel i860XP (50MHz). The two-dlmensmnal
mesh is adopted as the network of the Paragon.

5. Experimental Details

We allocate a SGNT to each of processors on the Paragon, and compute 100 trials for each sin-
gle/ensemble model. The number of processors (SGNTs) K for the ensemble averaging is changed from
1 to 30 (1,2,3,4,5,6,7,8,9,10,15,20,25, and 30), and the threshold value £ is 0 for each SGNT algorithm.
In order to reduce the redundant execution, we repeated 100 trials from Step3 to Step5 in prior section
continuously. Generally, the parallel efficiency ¢ is defined as follows:

_ S(K)
K @

where S(K) stands for the speedup, and K is the number of processors. In this paper, we adopt as the
scaled speedup one which is given in” to evaluate the parallel efficiency as follows:

S(K) =P, + P,K , (5)

where P; and P, represent the fraction of the program which is performed in serial and parallel, respec-
tively.

In order to investigate the parallel performance of ESGNNs, we select three typical classification
problems which are given as benchmark problems in this classification field. Next, we describe the brief
explanation of these problems.

102 Hirotaka INoue and Hiroyuki Narizisa

Table2 Six abilities of MONK’s problems

z;: head_shape € round,square,octagon;
xo: body_shape € round,square,octagon;
T3: is_smiling € yes, no;

z4: holding € sword,balloon,flag;

x5: jacket_color € red,yellow,green,blue;
zg¢: has_tie € yes,no;

MONK’s : MONK’s problems are widely used as the benchmark problems. The learning tasks of
MONK’s problems are a binary classification task. Table 2 shows six discrete attributes of MONK’s
problems. Each of them is given by the following logical description of a class.

e Problem M;: (head_shape = body_shape) or (jacket_color = red). From 432 possible examples,
124 were randomly selected for the training set. No noise was present.

e Problem M;: Exactly two of the six attributes have their first value. From 432 examples, 169
were selected randomly. No noise was present.

e Problem Mj: (Jacket_color is green and holding a sword) or (jacket_color is not blue and
body_shape is no octagon). From 432 examples, 122 were selected randomly. And among
them there were 5% misclassification, i.e. noise in the training set.

Cancer : Cancer problems are binary classification task for classify a tumor as either benign or malignant
based on cell descriptions gathered by a microscopic examination. Input attributes are :

the clump thickness,

the uniformity of cell size,

cell shape,
e the amount of magical adhesion,
o the frequency of bare nuclei, etc.

Cancer problems have 9 attributes, 699 examples. Each attribute consists of continuous real value.
Three problems are given by changing train and test data.

Card : Card problems are binary classification task. Card problems predict the approval or non-approval
of a credit card to a customer. Card problems have 51 attributes, 690 examples. This data set has
a good mix of attributes:
e continuous,
e nominal with small numbers of values,

e nominal with large numbers of values.

There are a few missing values in 5% of the examples. Three problems are given by changing train
and test data.

In this paper, we use below defined misclassification rate as the classification accuracy.

number of failures
misclassification rate = — . (6)
number of test data

Parallel and Distributed Classification using Ensemble Self-Generating Neural Networks 103

6. Experimental Results

Figure 5(a), Figure 5(b), and Figure 5(c) show the influence of the number of processors on misclas-
sification rate (%) for MONK’s (M;, M2, and M3), Cancer (Cancerl, Cancer2, and Cancer3), and Card
(Cardl, Card2, and Card3) problems respectively. Misclassification rates are improved by computing
the ensemble averaging of various SGNTs for all problems. Here, each misclassification rate shows the
average of 100 trials and its error-bar. It is shown that the classification accuracies are improved by

40 [y 30
M2 A..A.OA.“
35 L . 1
g M; —&- 25 |
.
E 20 t
§5] 3
% 20| § 15
g5t 0
2
10 | 5}
5 N N " " " N N N N N
0 5 10 15 20 25 30 5 10 15 20 25 30
Number of processors Number of processors
3
(a) MONK’s (a) MONK’s
1 ~ - p :
Cancert 8- 30 r !
10t Cancer2 -0~ 1 Gancer] &
T 9 Cancer3 —a&—] 25 | Cancer3 -—a—
o 8
g L
g, N 20
2 4 3
g - § 15 }
g 51897646000 > S D S—)
4 10
§ 4
= 314 e ‘T 51
1 j i H i o Le)) , X ,
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of processors Number of processors
(b) Cancer (b) Cancer
38 ' ' " Cardl —&— 30
36 | Card2 -0 1
<l !, Cardd ——&— | 25 |
g 2|01
Swolliil I . 20t
= og La&R! L1 !
8 | A i 15|
£ 2| ' i »
g 24 | B 43 4 10+
20! °
18 L N N " " 0 N N N N R
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of processors Number of processors
(c) Card (c) Card
Fig.5 Influence of the number of processors on Fig6 Relation between the number of
9,
misclassification rate (%) for (a) MONK'’s, (b) processors and speedup for (a) MONK’s, (b)

Ikeda map, and (C) Card Ca.ncer, and (C) Card

104 Hirotaka INoue and Hiroyuki Nariisa

computing the ensemble averaging of various SGNTs for all problems. Especially, the maximum misclas-
sification rates are largely improved for all problems. Comparison to even and odd numbers of K, odd
number ensembles are good accuracy than even number ensembles because even number ensembles has
some cases that are divided into the same number of class with respect to binary classification problems.
Hence, it is natural consequence that odd number ensembles are better than even number ensembles for
binary classification problems.

Figure 6 (a), Figure 6(b), and Figure 6(c) shows the relation between the number of processors and
speedup for MONK'’s , Cancer, and Card respectively. Approximately linear speedup is obtained for all
problems.

Consequently, the parallel and distributed classification using ESGNNs can obtain more higher clas-
sification accuracy than the single SGNNs by allocating each of SGNTSs to each of processors, go on
maintaining the high speed processing property of the single SGNNs.

7. Conclusions)

In this paper, we presented the parallel and distributed classification using ESGNNs to obtain more
effective implementation for classification on the MIMD parallel computer. From the experimental results
the following conclusions can be drawn:

¢ This model can improve the classification accuracy using various SGNTs which are allocated pro-
cessors on the MIMD computer.

e This model can perform a task with the high parallel efficiency by allocating each of SGNNs to
each of processors on the MIMD computer.

In the future, we intend to propose a fast pruning method for more efficient processing for classification.

Acknowledgments

The authors would like to thank the anonymous reviewer for helpful comments and the Information
Processing Center in Okayama University of Science for using the Paragon.

References
1) L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, 1984.

2) Leo Breiman. Bagging predictors. Technical report 421, Department of Statistics, University of California, Sep. 1994.

3) S. Haykin. Neural Networks: A comprehensive foundation, chapter 7. Prentice-Hall, Upper Saddle River, NJ , second
edition, 1999.

4) Hirotaka Inoue and Hiroyuki Narihisa. Performance of self-generating neural network applied to pattern recognition.
In ISAS’99 (5th International Conference on Information Systems Analysis and Synthesis), volume 5, pages 608-614,
Orlando, FL, Aug. 1999.

5) Hirotaka Inoue and Hiroyuki Narihisa. Improving generalization ability of self-generating neural networks through
ensemble averaging. In Takao Terano, Huan Liu, and Arbee L P Chen, editors, The Fourth Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD-2000), volume 1805 of LNAI, pages 177-180, Kyoto, Japan, Apr.
18-20 2000. Springer-Verlag. ISBN: 3-540-67382-2.

6) T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.

7) P. M. Pardalos, A. T. Phillips, and J. B. Rosen. TOPICS IN PARALLEL COMPUTING IN MATHEMATICAL
PROGRAMMING. Applied Discrete Mathematics and Theoretical Computer Science. Science Press, New York, 1992.

8) L. Prehelt. PROBEN1 — a set of neural network benchmark problems and benchmarking rules. Technical report
21/94, Universitit Karlsruhe, 1994.

9) David E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In
David E. Rumelhart, James L. McClelland, and the PDP Research Group, editors, Parallel Distributed Processing:
Ezplorations in the Microstructure of Cognition, chapter 8, pages 318-362. The MIT Press, Cambridge, MA, 1986.

Parallel and Distributed Classification using Ensemble Self-Generating Neural Networks 105

10) S. Thrun et al. The MONK's problems: A performance comparison of different learning algorithms. Technical report
CMU-CS-91-197, Carnegie Mellon University, Dec 1991.

11) W. X. Wen, A. Jennings, and H. Liu. Learning a neural tree. In IJCNN’92 (International Joint Conference on Neural
Networks), Beijing, China, 1992.

12) W. X. Wen, V. Pang, and A. Jennings. Self-generating vs. self-organizing, what'’s different? In P. K. Simpson,
editor, Neural Networks Theory, Technology, and Applications, IEEE Technology Update Series, pages 210-214. IEEE
Technical Activities Board, Piscataway, NJ, 1996.

