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1. Introduction

Let A be a graded commutative Q-algebra with dimgA < co. Then A is isomorphic to a truncated
weighted polynomial ring Q[z1,...,Z.])/(f1,...,fm), where m > n and f; is a homogeneous element
(¢ = 1,...,m) (cf. [2]). As defined in [4], we call a graded commutative Q-algebra A elliptic if
dimqA < oo and

A= Q[a:l" .. 7zn]/(fla- --1fn),

where f; is a homogeneous element (i = 1,...,n).

According to [1], the rational cohomology algebra of an elliptic space with positive Euler charac-
teristic is an elliptic graded commutative Q-algebra. The classification of isomorphism types of elliptic
graded commutative Q-algebras for the cases 1 < dimq A < 7 and dimq A = 10 are completed in [3]
and [4] respectively. The purpose of this paper is to classify the isomorphism type for the cases dimq A
=11 and 13. In order to state the following theorems we set

|f] = deg f

for a homogeneous element f of weighted polynomial ring Q[z,...,z,].

Theorem 1.  Let A be an elliptic graded commutative Q-algebra. If dimqA = 11, then A is
isomorphic to one of the following:

(1) Qlz]/(=").

(2) Qlz1, 72]/(2122°, 21% — 22%) (1] = (2/3)|z2]).
(3) Qlz1, 72]/(21%22, 21° — 22%) (1] = (2/5)|z2]).
(4) Qzy, 2]/ (2122, 217 — 25%) (lz1] = (2/7)|z2l)-
(5) Qlz1, 2]/ (2172, 71° — 227) (lz1] = (2/9)|=2|)-
(6) Qlz1, 72)/ (21222, 21" — 22°) (lz1] = (3/4)|22})-

(7) Qlz1, 23]/ (21222, 71° — 22°) (I21] = (3/5)|z2]).
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(8) Qlz1,z2)/ (2172, 21° — 22°) (|22 = (3/8)]=2))-
(9) Qlz1,72]/(z122, 71" — 22°) (lz1] = (4/7)]z2])-
(10) Qz1, 72]/ (2122, 7:° — 25°) (1] = (5/6)]z2])-
(1) Qle1,z2,35]/ (2123, 317 — 7273, 22° — 757) (|21] = (5/4)|22| = (5/6)|23])-
(12) Qlz1, 72, 73]/ (2122, 21° — 2273, 72° — 757) (1] = (5/6)|22| = (5/9)|z3])-
(13) Qlz1, 22, 73]/ (2122, 71 — 22°23,22° — 23%) (1] = (7/9)| 22| = (7/6)|z3])-
(14) Qlz1, 22, 23]/ (212, 71° — 2273, 22° — 23%) (lz1] = (7/4)|z2| = (7/10)|z3]).

Theorem 2. Let A be an elliptic graded commutative Q-algebra. If dimqA = 13, then A is
isomorphic to one of the following:

(1) Qlz]/(z").

() Qz1, 2]/ (21°22°, 2:% — 25%) (l21] = (2/3)lz2]).
3) Qlz1, z2]/ (2172, 21 — 22%) (21| = (2/5)|=2])-
(4) Qlz1, z2]/ (2122, 71" — 22%) (l21] = (2/7)|=z2))-
(5) Qlz1, z2)/ (21722, 21° — 22%) (I21] = (2/9)|22])-
(6) - Qlz1, 72/ (212,31 — 227) (21| = (2/11)]=2)).
() Qlz1, 72/ (21° 22, 11" ~ 2°) (l21] = (3/4)|22])-
(8) Qlz1,22)/ (21227, 21° — %) (1] = (3/8)|=2])-
(9) Qlz1, 23]/ (122,217 — 22°) (l21] = (3/7)lz2)-
(10) Qlz1, 2]/ (212,21 — 2°) (lz1] = (3/10)|z)-
(11) Qlz1, z2]/ (2122, 21° — 22%) (l21] = (4/5)l=2])-
(12) Qlz1, 7o)/ (2172, 7:° — 22*) (1] = (4/9)|=2])-

(13) Qlz1, 23]/ (2122, 2:° — 25°) (lz1] = (5/8)|z2])-
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(14) Qlz1,22)/ (w122, 31" —22%)  (|z1] = (6/7)|wa).

(15) Qlz1,72,23)/ (2123, 71% — 222w, 82" —z3®)  (lza| = (7/49)|za| = (7/6)|ws])-
(16) Qlz1,72, 23]/ (2122, 21° — 2225, 32° —w3®)  (|z1| = (7/6)|m2| = (7/9)lzs])-
(17) Qz1, 73, 73]/ (3172, 7% — 22°®s, 3% —w5”)  (|za] = (9/9)|z2| = (3/2)]s])-
(18) Qlz1,22, 23]/ (21227, 21% — 7233, 22° —z3%)  (loa] = (5/4)|ra| = (5/6)|as])-
(19) Qlz1,22, 73]/ (2122, 71* — 3273, 32° —z3%)  (I71] = (5/8)lea| = (5/12)]zs).
(20) Qlz1, 73,53/ (2122, 1% — T2°%3, 82" —z3")  (|z1] = (9/4) 2| = (9/10)|z3]).
(21) Qlz1, 72, 23]/ (2122, 31% — T2, 32" —3%)  (Iz1] = (7/6)|wa| = (7/15)|=]).
(22) Qlz1, 72, 73]/ (2122, 71% — 222,257 —w3”)  (lz1] = (9/4)|z2| = (9/14)|z3]).
(23) Qlz1, 23, 73]/ (®122,71% — 2273, 22" — 75%) (lz1] = (7/6)|z2| = (7/8)|zs|).

2. Proof of Theorems

Let A = Q[z,...,%4)/(f1,---,fn) be an elliptic graded commutative Q-algebra. Then according
to 1], we have

(2.1) dimqA = |fi| - - fal/|Z1] - -~ |Znl-

We assume that each f; (i = 1,...,n) has no linear terms. It follows from (2.1) and [3, Lemma 2.1]
that

(2.2) dimqA > 2"

Lemma 2.3. Let p be a prime. If n = 2 and dimq A = p, then p > 5 and there exzist positive
integers a,b,k and | with2 <1<k, a <k, al + bk =p and

A= Q[z1,22)/(2:1°32°, 31 F — 2!),
where |z2| = (k/1)|z1].
proof. We assume that |z;| < |z2| and fo & (z1). Then there exists an integer [ > 2 with | fa| = l|z2].

By (2.1), |fi| = (p/1)|z1]- This implies that f; € (z2), and hence f2 € (z2). Then there exists an integer
k > I with | f2| = k|z1|. By (2.1), | fi| = (p/k)|z2|. There exist non-negative integers c and d with

clzi| + dlza| = | f1l-

This implies that ¢! + dk = p, and hence (cl,dk) = 1. Set a = ¢ — k[c/k] and b = d + l[c/k]. Then
al+bk=p,1<a<kandl<b
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Suppose that there exist non-negative integers s and t with s|z;| + t|z2| = |f2|- This implies that
sl+tk = kl. Since (l,k) =1land0<t<Il,t=s—-k=0o0rt—1!=s5=0. So we can assume that
f2 = z1¥ —rzy! for r # 0. Since (I, k) = 1, there exist integers u and v with ku+lv = 1. Put y; = r~*z,
and y, = r¥zy. Then f; = r¥%(y,* — y2'). So we can assume that f, = z,* — z,}.

Suppose that there exist non-negative integers s and ¢t with s|z;| + t|z2| = |f1|. This implies that
sl + tk = p = al + bk. Since (I, k) = 1, there exists an integer ¢ with s —a = ki and b — ¢t = li. Then

.\E«au“ = &Hn+I§T: = sﬁaa% (mod Qwvv.

b

So we can assume that f; = z,%z,°. q.e.d.

Lemma 2.4. Letp be a prime. Ifn =3 and dimq A = p, then p > 11 and there are following two
possibilities.
(1) There ezist non-negative integers a,b,c,d,e k,l and m withm >2,2<1<k,1<a <k, 1<b,
1<c<m,1<d+e,d<k, (ac+dm)l+ (bc+em)k = p and

A= Qlz1, 22, 73]/ (21°2%23%, 1™ — 22°73°, 7% — z3'),

where |z3| = (Im/(al + bk))|z1| and |z3| = (km/(al + bk))|z,|.
(2) There ezist positive integers a,b,c,k,l and m with2 <m <l <k,a<k,b<l, alm+bkm+ckl =p
and

A = Qz1, T3, 73) /(21 %22 23, 71 % — 25! 25! — z3™),

where |z2| = (k/1)|z1| and |z3| = (k/m))|z1]-

proof. Suppose that
{f1, f2} C (21, 22) N (21, 23) N (22, 23).

This implies that f3 & (z1,22) U (21,%3) U (2, Z3), and there exist integers k,! and m with |f3| = k|z,|
= l|z2| = m|z;3]. We assume that |2;| < |z2| < |z3]. Then 2 < m <1 < k. Since {f1, f2} Z (z1), we
can assume that fy € (z1). There exist positive integers a and b with a|z;| +b|z3| = |f;|. By (2.1),

lf1l = (p/(am + bl))|z1| = (pl/k(am + bl))|z2| = (pm/k(am + bl))|zs].

There exist non-negative integers c,d and e with ¢+ d + e > 2 and c|z)| +d|zs| +e|zs| = |f1]|. This
implies that (cIm + dkm + ekl)(am + bl) = plm. Let g = (m,l), m = gm’ and [ = gl'. Then
(c'm'g + dkm' + ekl')(am' + bl') = pl'm'. Since (cI'm'g + dkm' + ekl') > I'm’, am’ + bl' < p. So
pl(cl'm'g + dkm' + ekl'). Let cl'm'g + dkm' + ekl = pj. Then (I' — ja)m' = jbl'. Since Y,m') =1,
U'|(I' — ja). This contradicts the fact 0 < (I' — ja) < I'.

Therefore, we can assume that f3 ¢ (z1,z2) and fo & (z1,73). There exist integers k and [ with
k>2,12>2, |fs| = k|zs| and |fo| = l|z2|. By (2.1), |f1] = (p/kl)|x1|. This implies that fi € (z2,zs3),
and hence {f2, f3} Z (z2,z3).

Thus we can assume that f3 & (z1,2) U (z1,z3) and f, & (z2,23). There exist integers k,! and m
with | f3] = l|z3] = k|z2| and |fa| = m|z;|. We assume that |zs| < |z3|. Then 2 <! < k and m > 2. By
(2.1),

[fil = (p/im)|z2| = (p/km)|z3].

This implies that f; € (1), and hence f, ¢ (z;). There exist non-negative integers a’ and b’ with
a' +b' > 2 and a'|zs| +¥'|23| = [fol- K a'd' +[a'/(k+1)]+ b/ +1)] > 1, set a = a' — k[(a’ — 1)/k]
and b = b +[(a' — 1)/k]. Then 1 < a <k, 1< b and al|zs| +b|z3| = |fo|- If @' 4 ['/I] = 0, then fo
m A.\Hmu&wv U AH_;.\H&V. .\.w m AH:Swv. m 2> land b 2> LIfY + —D\\&& = Oq then .\.n m Auﬂmu.@.mv U AH:Hqu
fs € (z1,22), m>1and k—a' > 1.

Suppose that (a2 + (b —1)%)(b2 + (a’ — k)?) > 0. Then we can assume that there exist positive
integers a and b with a < k and a|z;| +b|zs| = |f2|. By (2.1),

[/l = (p/(al + Bk))|z1| = (p/ml)|z2| = (p/km)|z3].
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There exist non-negative integers ¢’,d’ and e’ with ¢/ + d' + €' > 2 and c|z;| +d'|z2| +€'|z3| = | f1l-
This implies that ¢’ (al + bk) + d'lm + e'km = p. Then (¢'(al + bk),m(d'l + e'k)) = 1. This implies that
¢>0andd +e >0. Set c=c —mlc/m], d=d +a[c'/m] —k[(d' + alc'/m])/k] and e = €' + b[c' /m)]
+I[(d' + a[c'/m])/k]. Then 1 < c<m, d < k,d+e>1and c(al + bk) + dlm + ekm = p.

Suppose that there exist non-negative integers s, and u with

s|lzy| + t|z2| + ulzs| = | f3]-

Then s(al+bk) +tlm+ukm = klm. Since (al+bk,m) = 1, m|s. Let s = ms'. Then (t+s'a)l+(s'b+u)k
=kl. Since (l,k) =1and0 < t+s'a<k,u=s=t—k=0ort=s=u—1=0. So we can assume that
f3 = zo% — ra3! for r # 0. Since (I,k) = 1, there exist integers u,v with ku +lv = 1. Put y2 = r™"x;
and y3 = r’z3. Then f3 = r**(y2* — y3'). So we can assume that f3 = zo* — z3.

Suppose that there exist non-negative integers s,t and u with s|z,| + t|za| + u|zs| = |f2|. Then
s(al + bk) + tlm + ukm = (al + bk)m. Since (al + bk,m) =land0<s<m,t=u=s-m=_0or
s=(t—-a)l+@u-bk=0 Ifs=(t—a)l+(u—>b)k=0,k|(t—a). Let t—a =ki. Thenu—b= —liand

Totrg® = rp®thiz? T = %23 (mod (f3)).

So we can assume that f, = ;™ — rzo®z3® for r # 0. Since (al + bk,m) = 1, there exist integers s and
t with sm + t(al + bk) = 1. Put y; = r~°zy, y2 = r'!z; and y3 = r**z3. Then f3 = 7=tk (yo* — y3t) and
fo = 1™ (™ — 12°y3t). So we can assume that fo = z,™ — z2%z3".

Suppose that there exist non-negative integers s,t and u with s|z;| + t|z2| + u|z3| = |f1|- Then
s(al + bk) + tlm +ukm = p = c(al + bk) + dlm + ekm. Since (al +bk,m) = 1, m|(s —c). Let s —c = mi.
Then (t —d+ai)l = (e—u—bi)k. Since (I,k) =1, k|(t —d+ai). Let t—d+ai = kj. Then u=e—bi—jl
and :

T1° Tyt as® = 3y ST Mgy 4RI e mbimil = gy 2y gs®  (mod (f2, f3))-

So we can assume that f; = z;°z2%3°.
Now we turn to the case (a'2 + (' — 1)2)(b"2 + (a’ — k)%) = 0. By (2.1),

|f1l = (p/kD)21| = (p/mi)|z2| = (p/km)|zs|.

There exist non-negative integers a',b' and ¢’ with @'+ +¢' > 2 and a'|z1| +b'|z2| +c'|z3| = |f1|. This

implies that o'kl + b'lm + c’km = p. Then (a'kl,m) = (V'lm, k) = (c'km,l) = 1. Put a = a' — m[a'/m],

b="b—k[b'/k] and ¢ = ¢' +I([a’' /m]+[b'/k]). Then0 < a <m,0 < b <k, 0 < cand akl+blm+ckm = p.
Suppose that there exist non-negative integers s,t and u with

s|lz1| + tlza| + ulzs| = | f2| = |fsl-

Then skl + tml + umk = klm. Since (kl,m) = (k,l)=1,0<s<mand0<t<k, t=u=s-m=0,
s=t—k=u=0o0rs=t=u—1I=0. This implies that f, and fs are linear combinations of z;™, z*
and z3'. There exists d € Q such that the coefficient of the term z;™ of the polynomial f; = f3 + df2
is 0. Since f} & (z2) U (z3), we can assume that f3 = zo* — sz3' for s # 0. There exists e € Q such
that the coefficient of the term z3! of the polynomial f} = fo +ef3 is 0. Since f3 & (z1) U (z2), we can
assume that fo = ;™ — rz,* for r # 0. Since (m,k) = (km,l) = 1, there exist integers t,u,v and w
with tm + uk = 1 = umk + wl. Set y, = s—Fvp—F'w—ty 4, = g=mvp—kmuvtug, and ys = gwpkvwg,
Then

fo= mk:ﬁeﬂ.a;»cﬂl‘nv Q\HE _ wav and fz = mwﬂeﬁ:w;geluvﬁ&wk _ QwJ.
So we can assume that fo = ;™ — z2* and f3 = 2% — z3.
Suppose that there exist non-negative integers s,t and u with s|z,| + t|z2| + u|zs| = |fi|- Then

skl + tlm + ukm = p = akl + blm + ckm. Since (kl,m) = 1, m|(s — a). Let s — a = mi. Then (¢ — b)!
= (c—u —il)k. Since (I,k) =1, k|(t = b). Let t —b=kj. Then u =c— (i + j)! and

T’z e = 5n+§‘§..+sam??.+~.: = awnsnvawo (mod (f2, f3))-

b

So we can assume that f; = ;%23 z3°. q.e.d.
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Remark. The type (2) of Lemma 2.4 dose not occur for p < 31.

Proof of Theorem 1. Suppose that n = 1. Then A is isomorphic to a type of (1) of Theorem 1.

Suppose that n = 2. The possibilities of (I, k, a, b) of Lemma 2.3 are (2, 3,1, 3), (2,5,3,1), (2,7,2,1),
(2,9,1,1), (3,4,1,2), (3,5,2,1), (3,8,1,1), (4,7,1,1) and (5,6,1,1) correspending to (2), (3), (4), (5),
(6), (7), (8), (9) and (10) of Theorem 1 respectively.

Suppose that n = 3. The possibilities of (I,%,a,b,¢c,d,e,m) of (1) of Lemma 2.4 are (2, 3, 1, 1, 1, 0,
1,2),(2,3,1,1,1,1,0,3),(2,3,2,1,1,1,0, 2) and (2, 5, 1, 1, 1, 1, 0, 2) corresponding to (11), (12),
(13) and (14) of Theorem 1 respectively.

Proof of Theorem 2. Suppose that n = 1. Then A is isomorphic to a type of (1) of Theorem 2.

Suppose that n = 2. The possibilities of (I, k, a, b) of Lemma 2.3 are (2,3,2,3), (2,5,4,1), (2,7,3,1),
(2,9,2,1), (2,11,1,1), (3,4,3,1), (3,5,1,2), (3,7,2,1), (3,10,1,1), (4,5,2,1), (4,9,1,1), (5,8,1,1) and
(6,7,1,1) corresponding to (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13) and (14) of Theorem
2 respectively.

Suppose that n = 3. The possibilities of (, k,a,b,c,d,e,m) of (1) of Lemma 2.4 are (2, 3, 2, 1, 1, 0,
1,2),(2321,1,10,3),(2,3,3,1,1,1,0,2), (2,3,1,1,1,2,0,2), (2,3,1,1, 1, 1, 0, 4), (2, 5, 2,
1,1,1,0,2),(2,51,1,1,1,0,3), (2,7,1,1,1,1,0, 2) and (3, 4, 1, 1, 1, 1, 0, 2) corresponding to
(15), (16), (17), (18), (19), (20), (21), (22) and (23) of Theorem 2 respectively.
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