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1. Introduction

In the enumerative combinatorics, the Catalan number has been one of the ubiquitous and fascinating
numbers. The number is indebted to a Belgian mathematician Eugéne Charles Catalan (1814-1894) for his
effort in further development of Lamé's proof of the Euler-Segner proposition [1]. The Catalan number is
related to enumeration of trees, parenthesizations, ballot sequences, lattice paths and polygon dissections. The
problem on the number goes back to the middle of the 18th century when Segner and Euler solved a problem of
the triangulation of a polygon.

The Catalan number C(n) is defined for a positive integer n as

C()dfl 2n_ 1 2n+1
" rii\n )" 2nt1\ n '

that counts elements of as many as 66 sets, 6 typical sets of which are given below [2].
(1) Plane binary trees with n+1 endpoints or 2n+1 vertices. v
(2) Sequences iji; -++iy, of I'sand —1's with i, +i, +---+i; 20 forall j and i +i, +---+i,, =0.
(3) .Nonassociative binary parenthesizations of a string of n+1 letters. '
(4) Paths in the (x,y) plane from (0,0) to (2r,0), with steps (1,1) and (1,~1), that never pass below the
X -axis.
(5) Paths in the (x,y) plane from (0,0) to (n,n), with steps (1,0) and (0, 1), that never pass above the line
y=x.
(6) Dissection of a convex (n+2)-gon into n triangles by drawing n—1 diagonals, no two of which
intersect in their interior.

The present paper is devoted to the 3rd problem of binary parenthesizaition. Two enumerative functions
f.g or ¢ are introduced; g enumerates elements of a subset of the set whose elements f counts. The Catalan
number is shown as a restriction of g to a special case.
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2. Enumerative Functions
For two integers k,n such that k 21, n 20, an enumerative function f,(n) is defined as
def : .
f.(n) =#{e= (ee,-e,)eN | e, +e, +-+e, = n}

with the set of all non-negative integers N. f,(n) implies the number of non-negative integer points on the
k—1 dimensional hyperplane e, +e, +---+¢, =n.

Proposition 2.1.

n<n)=gﬁ-,(i)=ﬂ(n—1)+ﬂ-.(n) .

Proof. Let consider the Z coefficient k-variable polynomial ring Z[xl,xz,---,x,‘].

(xl +Xx, +"’+xk)n =2['il)(x, +x, +”'+xk-1)ixg"—i .

i=0

Since f,(n) implies the number of different terms except for coefficient in the expansion of (o, +xy +- 4 x, )" ,

fk(n)=§,fk_l(i) .

n-1 ’ ‘

The second equality is readily derived by f,(n-1)= f,_,(i) - |
i=0

Proposition 2.2.

OE (P B (e SRS

Proof. The solution of e, =n leads to f;(n)=1 for Vn>0. By mathematical induction on k,

s=35a0=3( 157

(P)=(50)(45)
=) O

The proof of the rest is trivial. |

Since
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The relation of f,(n)= f,(n—1)+ f,_,(n) in Prop. 2.1 yields Table 2.1. From f,,(n—1)= f,(k) (Prop.
2.2), the subdiagonals are resulted from reflexion with respect to the diagonal of the table.

Table 2.1. Table of f,(n) (k21,n20).

k,n 0 1 2 3 4 5

1 1 1 1 1 1 1

v v Yy

2 1 »2 >3 >4 » 5 » 6

v v

3 1 3 »c—»10—»15 1
v oy

4 1 4 10 20— 35 56

vy o9

5 1 5 15 35— 70— 126

R IR

6 1 6 21 56 126—¥252

Let g,(n) be an enumerative function defined as

def
g,(n) =#{eeN" |e,+e,++e,=ne +e, ++e Sn—i+1(i=2,3,---,k)} ‘

for k21,n2k—1, or equivalently ¢,(n) as
def
(pk(n)=g,‘(n+k—1)=#{eeN" |e,+e,++e, =n+k-1,

e, +e, +te Sntk—i(i=23,,k)}
for k21,n20.

Proposition 2.3.

n+l

(7 (") = z ‘Pk—l(i) (k 2ln2 0)

i=l
=@ (n-1)+0,,(n+1) (k22,n21) .

Proof. The defining conditions of ¢, (n) is rewritten as
e+e,++e_ =n+k—e -1,
ete,++e_ Sn+k—e —i (i=2,3,--,k)
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and e <n .
Since 0<e, <n,

n+l

@ (n)= i‘l’k—l(” —é + 1) = z¢k-l(i) .

€,=0 i=l
Then,
P (n-1)= Z(pk-l(i) .
i=1
Hence the second equality is shown. ' |

Proposition 2.3 is equivalently represented in terms of g,(n) as the following corollary.

Corollary 2.4.
n+l
D) gn+k-1)=Yg,,(i+k-2) (k21,n20)
i=l
=g, (n+k=-2)+g, (n+k-1) (k=z2,n21) .
n+k-1
Q@  gln)= Y g.,0) (k21,n2k-1)
1

i=k-

=g,(n-1)+g,,(n+1) (k22,n2k) . |
For n=0, ¢, =0. Then, by Prop. 2.3 and Cor. 2.4 (1),

Proposition 2.5. For k22,

M ¢0)=9,,0) .
@ gk-1)=g,,(k-1) . I

Proposition 2.6.

1{n+2(k-1
)=,k = 2"

"y ] (k21,n20) . (1)

Proof. For k=1, ¢, =n. Thus, ¢,(n)=1 (n20).
+110

. . n+l1(n
(2nd righthand side of Eq.(1)) = —( ) =1.
n

By mathematical induction on k and n, suppose that the proposition holds for k —1 (k=2) and for Vn20.
Now, k (22) is fixed. Prove Eq.(1) for ¥n20 and for the fixed k. By Prop. 2.5, ¢,(0)= ¢,.,(1). By the
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supposition,

0o ()= _1;1__(1 +2{(k-1)- 1}) _ 3(2@ —1)- 1) |

1+(k-D  *k-1-1 K\ (k-D-1
Since
2k-1)-1\_(2(k-1)-1
k-1 ) \tk=-D-1)
hol 2k-1)-1) (2k-1D-1)| _1(2¢-1)
q’""()_I k-0-1\ k=1 "kl k-1 )

Thus, the proposition holds for n=0. »
By Prop. 2.3 and the supposition of induction for n—1 atkand for V>0 at k—1,-

¢ (n)= @ (n-1)+0,,(n+1)

_(n—l)+1((n—l)+2(k—l))+ (n+1)+1  ((n+1)+2{(k-1)-1}
T (n-1)+k k-1 (n+1)+(k-1) (k-1)-1

__n [n+2(k—-l)—l)+1+(n+1)(n+2(k—1)—1)

n+k-1 k-1 n+k k-2
n  (n+2(k-1)-1 L] n+2(k-1)-1
n+k-1 k-1 n+k k-2

_( n k-1 )(n+2(k-1)-1J n+1(n+2(k—1)—1)
= + — - =— . .
n+k-1 (n+k)(n+k-1) k-1 n+k k-1

ou(m)= 21 {(n+2(k—1)—1]+(n+2(k—1)—1)}_11_-1(n+2(k‘—1))‘ .

n+k k-1 k-2 Tn+k\ k-1

Thus,

Corollary 2.7.
Fru(n)=g,(n)=Cn) (n20) .

Proof. By Prop. 2.5 (2), g,.,(n) =g,(n).

gn+.(n>=gn(n)=¢n(1)=i(2"_l) -

n+ll n-1

(T 1)

gu(n)=C(n) .

Since

11
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Alternative proof.

9ua() =00 = 7)) I

+1

From the first proof follows the following resuit.

Proposition 2.8. For n2>1,

The following table of ¢@,(n)=g,(n+k-1) (k21,n20) is obtained by using the basic relation

@ (n) =@, (n=1)+9,_ (n+1) with ,(0)=9¢, (1), ¢,(n)=1 and @,(~1)=0; here, ¢,(~1)=0 is defined so
as to satisfy the basic relation.

Table 2.2. Table of ¢,(n)=g,(n+k-1) (k21,n20).

k,n 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1
2 | — 34— 7

N

3 2 »5 » —»14 $20 27 » 35

e

4 5 14 23 48 » 75— 110

A

5 14 42 90— 165—» 275

A

6 42—Pp132—P297—P 572

A

7 132—P29—P1001

s

8 429—91430

Moreover, g,(n) is related to f£,(n) as follows.
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Proposition 2.9.

gk(n)=%fk(n) (k21,n20) .

Proof.
= (k- oy (n=Ge=D)+1(n=(k=D+2(k-1)
) zanlln- b 1)_(n—(k—1))+k k-1
_n+)-k-Dfn+k-1 :
- n+l k-1 :

3. Parenthesization

Consider in this section the problem of nonassociative binary parenthesization. The binary parenthesization
is determined once all the left parentheses are given; the right parentheses are automatically decided according
to the left parentheses for binary parenthesization. Thus, it suffices to discuss positions of left parentheses. Let
a word consist of n+1 letters, x,x,--x,,,, and e; denote number of left parentheses posed between x,_, and x,
(i=1,2,+-,n); here, x, is a ghost letter temporarily introduced to explain e, and e,,, is omitted with inhibition
rule of parenthesizing a letter such as (xn+,). The binary parenthesization, then, requires at least the following
two conditions:

1) e+e,+---+e, =n ,

) e, <1 .

Furthermore, similarly to (2) e,,e,, e, satisfy e, +e,, +---+e, <n—i+1 (2<i<n-1). Then,

2) e+e,++e,<n—i+l (2<i<n) .

The binary parenthesizations are enumerated under the conditions of (1) and (2'). Thus, g,(n) counts such

parenthesizations. Let p(n+1) be an enumerative function counting the nonassociative binary parenthesizations
of a string of length n+1.

Proposition 3.1.
p(n + 1) = (pn+l (0) = (pn(l)
= g'n+l(n) = gn(n)

=C(n) . |

From the above discussion to solve the parenthesization problem it is concluded that g,(n) or @,(n) is
regarded as an extension of the Catalan number.
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