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abstract

The electric energy loss, depending on impact parameter, of swift ions in collisions with
molecule and atom targets was theoretically investigated with the dielectric function method.
The stopping power was calculated on the basis of Lindhard dielectric function with the local
density approximation (LDA). Hereby we take into account the inner shell exitation, as well as
the "plasmon” excitation. The molecular effect that the stopping power per atom of a molecular
target is smaller than that of an atom was found for the nitrogen molecule target.

Introduction

The energy loss or the stopping power is important quantity on the atomic collision research.
It is well known that the stopping cross section is propotional to the velocity v of the incident ion
at low velocities and decreases as (1/v2)log v? at high velocities. For an atomic target, the stop-
ping power formulae were obtained by Bethe and Bloch at high velocities and by Firsov at low
velocities. There is no theoretical formula derived from the first principle in the intermediate ve-
locities region. On the other hand, for the electron gas Lindhard, Ritchie and other theoreticians
presented the stopping formulae, where the induced polarization of the media play an important
role. A typical feature here is to be able to present the above mentioned velocity-dependences of
the stopping power at low- and high-velocities. Those two asymptotic behaviors of the stopping
power in the nonrelativistic region are connected smoothly in the elecrtron gas model, apart from
the absolute values. In the electron gas , there are two excitation modes: one is the individual
and the other is the collective excitation. At high velocities, the collective excitation mode makes
an equal contribution to the stopping as the individual exitation mode. The experimental data
of the stopping cross section of the various gases have presented by several group [1-4]. It is
well-known that at high velocities Bragg’s additive rule holds valid. Usually, the molecular effect
was not taken into accunt there. At lower velocities, however, it well be expected. As far as
the authors know, there was not any analysis on the molecular picture. Our motivation is to
evaluate the stopping power of the molecular gases in the framwork of a relatively simple but a
powerful model. The present method will be extended to the estimation of the related energy
deposition phenomena.

We start with the brief description of the stopping power and the dielectric function with
the local density approximation. After that, we compare the calculated results with the data.
Finally the summary and the conclusion are described.
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Stopping power formula by dielectric function
In general, the stopping powers is defined by the energy loss of a particle passing through path
unit length as

S=-= (1)

where E is the kinetic energy and x is the path length of a projectile. When the projectile moves
in the target electron gas, the electric polarization is induced. This works as a resistant force

i.e., the stopping power. Hence, the stopping power formula is rewritten as

S = _%?. =-lyvE= %"—eaﬁ(fi, £) (2)

T v

where ¥ is velocity, Z;e and R are the charge of the projectile and its position vector, F is the
induced electric field and ¢ is the time. In order to get the stopping power, the induced expression
of the electric field should be found. To do so, we call Maxwell’s equation

VE(F,t) = —41{pext(7, 1) — pina(F, 1)},

VD(7,t) = —4rpegs(7, ) (3)

where pes: is the external charge, ping is the induced electron density and D is the electric
displacement. By solving above equations in the Fourier space with the definition

D(k,w) = e(k,w) F(F,w), e
we have
p,',,d(l-c‘,w) = {1 - ;@%‘;—)‘}pez‘t(’;’w)) (5)
F(Fw) = ~iF gy pinaF). ®)
By Egs.(5) and (6), the induced electric field is found to be
e o

Here, as the external charge is assumed to be a point charge, one has
Pest(kyw) = 21 Zy€8(w — kD). (8)

Therefore, from Eqs.(2), (7) and (8), the stopping power is reduced to

2.2 0o kv
S=Zl°’/ dFk dwwi{l— ! } )
0

mv? —kv E(E, w)

As shown in the next section, the real part of the inverse dielectric function is an even function

of w and the imaginary part is an odd function with respect to w. Then the stopping power

finally becomes
2,2 oo kv
5=%—f-/ "’—'5/ dowimd1l— —— b (10)
™ Jo Kk Jo e(k,w)
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We remark that the imaginary part of the dielectric function can only contribute to the electronic
stopping power.

Dielectric function
We consider the system of the free electrons moving in the uniform positive background. The
Hamiltonian of this system is written as

hz
A
H=d 3 +3 |,,_r,| (1
i(#)J
where 7; is the position vector of the i-th electron and A; denotes the Laplace operator with
respect to 7;. Vp is the interaction potential between the free electrons and the uniform positive
backround. If we express the second term in Eq.(11) in the Fourier space, one obtains

H= Z A + Y 2“: =5pLpk, (12)

k(s0)

where p = p e~*7 is the density fluctuation operator. Here we drop the constant terms of
no interest.

The interaction potential H;,q between the external charge and the free electrons is also
expressed in the Fourier space as

4relZ -
Hing = "P_% _P_I‘P]‘tpezt(ky w)ewtent, (13)
kyw

where 7 is the positive infinitesimal because the interaction is introduced adiabatically. With
Eqgs.(11) and (13), the induced charge density in the electron gas is obtained within the pertur-
bation

- 41(‘6221 d’nlp |¢0 I(d’nlpk|¢0)|2
pind(k,w) = ——hic-"—peﬂ(k w)Z {w wko +im wHwnot+in|’ (19

where ¢o and ¢, are the wavefunctions of an initial state |0 > and a final excited state |n >,
Eq and E,, are the energy in an initial state and a final state, and wno = (E, — Eg)/h. By
substituting Eq.(14) into Eq.(5), the inverse dielectric function is

1 4ré? fn
T ekw) Z 2 w(: ¥ 2i)’ (15)

where fuo is the oscillator strength of the form fno = (2me/hk?)wno|(dnlok|do)|?. Using a
mathematical relation:

e xin p(1/z) —ird(z)  (n—04),

the inverse dielectric function can be divided into the real part and the imaginary part.

1 _ 47re 2wno
Re{e(l?,w)} = 1+ Z|(¢n|ﬂk|¢o)|2 (*—wﬁo),

m{ e(Elw) } = 47:.:7 D" l(bnlok 602 {8(w — wno) — 8(w + wno)}- (16)
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We can see from this equation that the real part is an even function of w and the imaginary part
is an odd function. By this relation, one realizes that Eq.(9) may be rewritten by Eq.(10).

Dielectric function and individual excitation

Lindhard have calculated the dielectric function of the electron gas at T=0 [K]. In this model
the electron gas in the ground state receives a momentum £k from the external electric field and
is excited out of the Fermi sphere. Since the electrons occupy the momentum space in the Fermi
sphere, the momentum of an excited electron is allowed to range

hkp < hp < h(kr + k), (17

where kp is the Fermi wave number. Therefore, the oscillator strength becomes

2m,
Jon = FE2 wn0|(¢nlpk'¢0)|2 hkz

- ng.“?,)’ (18)

- R(P+E)?  hp? 1 (p<k
W+ R ) = MEHRT et "if:{ (p<kr)

2me 2me 0 (P > kF)’

where hw(p'+ E, p) is the energy transfer and nj, is the Fermi-Dirac distribution function. Then,
the dielectric function is reduced to

1 _ 47"62 2‘0(15"" E’i’)(l - nﬁ'-‘-E,g)nila

L e R ~ w5+, §)? — w(w +in) (19)
By calculating the above equation, we obtain the Lindhard dielectric funcion as
e(k,w) = er(k,w) +ier(k,w), (20)
er(z,u) =1+ (*/22) fi(z,u), e = (X*/2%) fa(z,0), (21)
fulzu) = -+ {l- (2= w}n —-’—‘—+—II+ - (z+uin i*“—“’ (22)
-1 8z +u—1
1'23 (z+u<1DE)

fa(z,u) = 812{1—(z-u)2} (lz—ul<1<z+udl &), (23)

0 (Jz—u| >1DE &)

where z,u, x are the reduced dimensionless parameters, z = k/2kr, u = w/vpk, x? = vo/mvF.

Plasmon excitation
The collective excitation induced in the electron gas is called the plasmon excitation. The
dispersion relation of the plasmon w = w(k) is obtained from e(k,w(k)) = 0. Let us consider
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only the real part of the dielectric function. By the denominator and the numerator in log are
expanded in terms of u =+ z for u > z + 1, Eq.(22) becomes

Al )_1 1 1224382 42 1
lz’u-Szz—u2 5 (22 — u?) 15 (22 —u?)?

4oens (24)

In the region of u > z + 1, the imaginary part of the dielectric function automatically vanishes.
Then, from
er =0 =1+ fi(z,u), (25)

we obtain the plasma dispersion function

T u.:2—wz+3—‘v§3kz+ilc"=A2 (26)
- ’ REA am,

where w, and vr is the plasma oscillation frequency and the Fermi velocity, respectively. It is
generally known that the oscillator strength should satisfy the sum rule:

ano =n.

By substituting wp, into Eq.(15) and using the sum rule, the imaginary part of the inverse
dielectric function is

-1 w? 1 2
,Im{ e(l'é,w)} - "23,’57? (W? — AD)/(4?) + 2 (27)

Using the mathematical equation

1 [ ; 1 2
= lim — —nlk| ikz _ = 4N
§(z) ']'.1_1% o /;oo dke e Py
Eq.(27) becomes
-1 Twl
m{ — = 0w — A). 28
{e(k,w)} 52 0 ) (28)
By substituting Eq.(28) into Eq.(10), we finally get the stopping power of the plasmon is
22?0t
S = o2 L2 ln-k—:, (29)

k- = {2(v? — 3v}/5) — 2/ (07 — 30%/5)2 — w2) /2.

Here, the upper limit of k, k. is the crossing point between the plasma dispersion curve and the
line of 2 = u + 1. On the other hand, the lower limit k_ is the crossing between the plasma
dispersion and the curve w = vk. The total stopping power is obtained as the sum of the
contribution of the individual excitation and the plasmon excitation.

Local density approximation-LDA

The stopping power is formulated by the dielectric function method. In order to predict the
stopping power especially at high velocities, we would like to adopt the local density approxima-
tion (LDA), because of taking into account the inner-shell excitation. This method is valid in the
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high-velocity cases. So far, we know the gaseous LDA and the solid LDA [5]. If it can be assumed
that the number density p(7) of the electron varies smoothly as the function of a position 7, we
can replace p (this is constant) by the local density p(7). Hence, If we define the local Fermi
velocity vp(7) = (h/m.)[3n2p(7)]'/® and the local plasma frequency w,(F) = [4re?p(7)/m,], the
stopping power formula of the atomic LDA is

_ 4nZ%el
T mew?

S

N [ drie) (30)

where L(7) is the local stopping number. N denotes the number density of the target atoms.
The stopping power of the dielectric function is only the contribution of the outer-shell electrons,
the LDA stopping power should include the contribution of the inner- and the outer-shell exci-
tation.The electron density of the atomic LDA approaches zero at distance far from the nucleus.
Note that in the LDA total energy loss, the contribution of all trajectories is independent of
the molecular orientation. This is because each volume element contributes to the energy loss
independently, and the total energy loss is a simple sum of these contributions. Here we can

assume that the coulomb deflection are neglected.

Electron density

In order to study the molecular effect, we calculate the LDA stopping power of a N atom and
a N; molecule. The electron density of a N atom is determined from the Roothaan-Hartree-Fock
wavefunction by Clementi and Rotti [6]. The wavefunction for 1s, 2s and 2p states are as follws:

&(1s) = 0.93780x; + 0.05849x3 + 0.00093x3 — 0.00170x4 + 0.00574xs + 0.00957xs,

¢(23) = =0.21677x; — 0.00846x2 + 0.17991x3 + 0.67416x4 + 0.31297x5 — 0.14497 6,
¢(2p) = 0.26639x7 + 0.52319xs + 0.27353x9 + 0.01292x 1o, (31)
Xn = 27V2{2x £, }/? exp(~Ear) Yoo(6, 4) (n=1,2),
Xn = 2_1/2{2 X 51:}3/2 r e:vp(—{,,r) %0(0, ¢) (n =3~ 6)7
Xn = 27V22x 1% r exp(~tar) Yio(6,9)  (n=T~10), (32)

where §; = 6.45739, & = 11.17200, §; = 1.36405, {, = 1.89734, {5 = 3.25291, & = 5.08238,
& = 1.16068, {5 = 1.70472, £ = 3.03935, £10 = 0.01292 and Yoo and Yig, are spherical hermonics.
In this paper the electron density is aussmed to be spherically symmetric so that we take Yoo
and Yy to be (4r)~1/2. Figure 1 shows the spatial density of the electrons in a N atom. The
spatial electron density in a N; molecule can get from the sum of the electron densities of two N
atoms, where the interatomic distance is 2.068(a.u.)[7].

Results and discussion

Figure 2 shows the LDA stopping cross sections per atom of the N atom and the N; molecule
for a proton. The solid curve and the broken curve denote the N, molecular target and the
N atom, respectively. The symbols O, X, A and + denote the experimental data of Ormrod,
Phillips, Reyolds and Bichsel, respectibely. It shows that while the data are larger than the
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t_t- | Fig.1. The probability
ota density of the electron in a
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25 ity density of 1s, 2s and
2p, respectively. The ab-
scissa is given in terms of

%

the variable r/ag. (ap is
the Bohr radius)

p(r)
O = N W & T OO ~J oo

calculated two LDA curves around the peak velocities, the data are smaller than the LDA curves
at low velocites. Comparing two LDA curves, the molecular one yields the lower values than the
atomic one. We call this the molecular effect. This effect appears around the peak energy down
to the low energies. This is due to the increase of binding of the electrons in the molecular by
the overlap of the atomic electron density.
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ton.

Kabachnik[8] performed a similar calculation for the energy loss of a He?* jon traversing N,

molecular target as to the case where the ion is incident both along the molecular axis direction
and the perpendicular direction, respectively. They used the Lindhard formula approximated
in the high velocities and the electron density of MOLPRP code. As far as, they considered
the straggling. Figure 3 shows a contour plot on the deposited energy (in eV) calculated by
Kabachnik[8] for collisions of He?* jons with N molecular at the incident energy of 2 MeV. The
outermost solid line corresponds to an energy loss of 10 eV. Other lines are drawn in steps of 20
€V(a) or 15 eV(b). The innermost line corresponds to an energy loss of 170 eV(a) and 85 eV(b).
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Fig.3. The deposited energy (in eV) for the collision of a He?* ion with a N2 molecule at
the energy loss of 2 MeV by Kabachnik [8]. The outermost solid line corresponds to an energy
loss of 10 eV. Other line are drawn in the steps of 20 eV (a) or 15 eV (b). The innermost line
corresponds to an energy loss of 170 eV (a) and 85 eV (b).

In this calculation, Kabachnik presented that the stopping cross section is 32.4 x 107!%
(eVem? /atom) and the exprimental data[9] is 37.4 x 107'%(eVem?/atom). Using our LDA
model, we also calculated the energy loss of a He?* ion for a N molecule and compared with
Kabachnik’s. Figures 4 and 5 show our calculated results. The values of contour steps are
the same with Kabachnik’s. But it is the different point that those innermost contours corre-
spond to an energy loss of 150 eV(fig.4) and 85 eV(fig.5). And the stopping cross section is
27.2 x 10~!3(eVem? /atom). Our result is smaller than Kabachnik’s result. This is due to the

straggling.
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In the dielectric function method, the atomic LDA energy loss tends to be overestimated at
low velocities. Therefore, the theoretical result of the stopping cross section is larger than the
experimental data at the low velocities, but at high velocities the theoretical result agrees with
experimental data. In spite of a slight overestimation, our result shows a clear difference between
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atomic target and molecular target.

Since the electron density of the molecule is greater than that of the atom, the molecule LDA
stopping per atom is smaller than the atom LDA on the whole. The cotribution of the energy
loss of the particle passing through interatomic region is suppressed because of the local Fermi
velocity. The electron density is enhanced there. This enhancement works strongly at low and
intermediate velocities, but does not work so much at high velocities. Therefore, the molecuar
effect appears at the low velocities, but doesn’t appear at high velocities.

In this calculation, we use the overlap of the statistical electron densities. However, one might
think that it is significantly different from the quantum-mechanical electron density. To check it,
we compare in fig.6 the present and the quantum-mechanical electron density of a N, target [10].
As shown in figure, the statistical electron density well approximates the quantum-mechanical
one. Then our analysis can be considered to be well reasonable within the employed model.
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