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1. Introduction

Let A be a graded commutative Q-algebra with dimgA < oo. Then A is isomorphic to a truncated
weighted polynomial ring
Q[wl’ v axn]/(fl, . 'vf'ﬂl))

where m > n and f; is a homogeneous element ( = 1,...,m).

Definition. A graded commutative Q-algebra A is said to be elliptic if dimqA < oo and
A= Q[xly v axn]/(fl’ ey fn),

where f; is a homogeneous element (i = 1,...,n).

In order to state the following theorem we set

|f] = deg f

for a homogeneous element f of weighted polynomial ring Q[z1,.. ., z,].

Theorem. Let A be an elliptic graded commutative Q-algebra. If dimqA = 10, then A is isomorphic
to one of the following:

(1) A Q[z]/ (7).
(2) Q[z1, 23]/ (212, 22°).
3) Q[z1, 2]/ (2172, 2:° + az,®),

where |z1| = |23] and a € Q*/ ~ (a ~ b < ab € Q%5 or a/b € Q*5).

(4) Q[z1, 2]/ (z1? — azs?, sT120* + t2,°),
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where |1] = |23| and (a,(s,1)) € (Q*\ Q*?) x (Q*\ {(0,0)}))/ ~ ((a,(5,2)) ~ (b, (u,v)) & b =
ar?,0 < r € Q and (Fv + ur/a)(~t + sv/a)/(Fv + ur/a)(t + sv/a) € Q(Va)®, Q(Va) = {c+dva
€ Q(va)*|¢® —ad® =1}).

(5) Qlz1,22]/(z1® + 722, 715),
where |z2| = (3/2)|21].
(6) Qlz1, 2]/ (z22, 21° + z1%22),

where |z2| = 2|z1].
(M Q[z1,z2]/(z1* + az2?,21° + 2131,),

where |z2| = 2|z1| and a € Q\ {0, -1}.

@) Q[z1, 732]/(9314 +aﬂ722,1‘15),

where |z| = 2|7;1| and a € Q*/Q*2.

9) Q[z1,z2)/ (z1* + az2?, 71%2,),
where |zs| = 2|z1| and a € Q*/Q*2.

(10) Q[z1, 7]/ (z1%2s, :° + azp?),
where |T2| = 3|z1| and a € Q% /Q*2.

(11) Q[z1, T2)/ (2122, 1% + az2?),
where |z| = 4|z;| and a. € Q*/Q*2.

(12) Q[$1,-772]/($1332,1716 + am24),
where |z3] = (3/2)|z1| and a € Q*/Q*2.

(13) Q[z1, 22/ (2122, 217 + 2°),

where |z2| = (7/3)|z1].

(14) Q[z1, z2]/ (@122, 21 + 22°),

where |z3| = (4/3)|z1].

(15) Q[z1, T3, 3]/ (212, T2T3, 2% + 73?),

where |z2| = (2/3)|z3].

(16) Q[$1,$2,$3]/(ZL‘12,1‘2$3, T1Z22 + T2 + z32),
where |z1| = |z2| = (2/3)|z3].

(17) Q[z1, %2, 23]/ (212 + az2?, Tox3, T172% + T37),
where |z1| = |z2| = (2/3)|z3] and a € Q*/Q*2.

(18) Q[z1, z2, 73]/ (21% + az2®, Tow3, 1227 + 2% + 23?),
where |21| = |z2| = (2/3)|z3| and a € Q \ {0, —1}.

(19) Q[z1, Z2, z3)/(x1% + aza?, 223, T2° + 37),
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where |z1| = |z2| = (2/3)|z3| and a € Q% /Q*2.

(20) Qz1, 23, 23]/ (2122, 21° + Tax3, T5° + az3?),
where |z3| = |z3| = (3/2)|z1| and a € Q*/Q*2.

(21) Q[ml,xz,ma]/($1$2,$13 + 372563,09322 — T3 + 132),
where |z2| = |z3| = (3/2)|z1| and a € Q%.

(22) Q[z1, 22, 23]/ (T172, 712 + 222, 722 + az3?),
where |z3] = |z3] = (3/2)|z1| and a € Q*/Q*2.

(23) Qlz1, z2, 23]/ (T122, T2° + 7123, 71 + az3?),

where |z3] = (3/4)|z3| = (3/2)|z1| and a € Q% /Q*2.

2. Proof of the Theorem

Let A = Q[z1,...,Zn)/(f1,-.., fn) be an elliptic graded commutative Q-algebra. Then according
to [1], we have

(2.1) dimqA = [f1]- - |fnl/|z1] -+ - |zn]-
We assume that each f; (i =1,...,n) has no linear terms and that

Following lemma is [3, Lemma 2.1].
Lemma 2.3. 2lz;| < |fi| fori=1,...,n.

It follows from (2.1) and Lemma 2.3 that
(2.4) dimq4 > 2™
Suppose that dimqA = 10. Then it follows from (2.4) that n = 1,2 or 3.

(I) Suppose that n = 1. Then A is isomorphic to a type of (1) of Theorem.

(IT) Suppose that n = 2. Then it follows from (2.1) that

(2.5) |f1] - | fo| = 10]z1] - |z2].
There are following types which correspond to that of (2) of Theorem:
(2a) Q[z1, 23]/ (217, 25°)
and
(2b) Q[z1, z2]/ (21, 22?).

(IL.1) Suppose that |z1| = |z2|. It follows from (2.5) that

5/fil = 2|fa| = 10|z |.
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We set f; = 2,2 — azy? and fo = sz;22* + tz2° (a,s and t € Q). Suppose that

©0: Q[z1,22])/(f1,1, f1,2) = Qlz1, 22]/(f2,1, fo,2)

is an isomorphism, where f; 1 = 212 — a;z2?, fi2 = sit1Z2* + tiz2® and ¢(z:) = piz1 + @iz2 (a4, 83, i, pi
and ¢; € Q;i=1,2). Then ay = r2a; (0#7 € Q).

(I1.1.1) Suppose that a = 0. Then ¢ # 0 and A is isomorphic to a type of (2a).

(I1.1.2) Suppose that a; € Q*2 = {r2|0 # r € Q} (1 = 1,2). Set u;; = z1 + \/a;z2 and u; 2
Ty — /@zy (i =1,2). Then fi1 = uituig, (fi2) = (uin® + biui2®) (b € Q* = Q\ {0}) and @(uy ;)
Piug 1 +Qiugz (i = 1,2), where Py = ((p1 ++/a1p2)\/0z2 + @1 ++/8142)/2/az2, Q1 = ((p1 + /a1p2) /a2 —
@1 — a1g2)/2/az, P2 = ((p1 — v/a1p2)vaz2 + @1 — /a1g2)/2+/az and Q2 = ((;1 — /aip2)y/az — q1 +
\/@142)/2+/az. This implies that

PP, =Q1Q:=(P° + 51P25)b2 - Q1" -b1Q2° =0.

If P2 = Q1 = 0, then Ple 75 0 and b2 = (Qz/Pl)sbl. If P1 = Q2 = O, then P2Q1 75 0 and b1b2 =
(Q1/P»)%. This case corresponds to that of (3) of Theorem.

(I1.1.3) Suppose that a; € Q% \ Q*% (i = 1,2) and a2 = r?a; (r € Q*). Set u;1 = 1 + \/aiz2
and u;2 = 71 — \/a:iz2 (I = 1,2;4/a; = ry/a7). Then, in Q(\/a1)[21,22], fix = winuiz, (fi2) =
(’U,,',15 + biui’zs) and <I>(u1,z~) = Pi’U,Q,l + Qiu2,2 ('L = 1,2), where

® = o ® 1: (Q[z1, 22/ (f1.1, f1,2)) ® Qv/ar = (Q[z1,22]/(f2,1, f2,2)) ® Qv/ax,

bi = (si/@ — t:)/(siv/ai + ) (i = 1,2), Pr = ((p1 + Vaip2)/az + @1 + 1/a142)/2y/az, Q1 = ((; +
V@1P2)+/82— a1 —/8142) [2+/0z, P2 = ((p1—+/a1P2)y/G2+q1 —/a192) /2+/a2 and Q2 = ((p1—/@1p2)\/a2—
@1 + /a142)/24/az. This implies that

PP, = Q1Q2 = (P° + b1 P%)by — Q1° — 0:1Q2° = 0.

If , = Q; =0, then P, = p; + /aip2, @2 = p1 — y/arpz and by = (Q2/P1)°h. If P, = Q2 = 0,
then P, = p; — \/a1p2, @1 = p1 + /a1p2 and bi1by = (Q1 /P2)%. This case corresponds to that of (4) of
Theorem.

(IL.2) Suppose that |z1| < |z2|.

(I1.2.a) Assume that |fi| is some integer multiple of |z1]: |fi] = kl|z:|, where k is an integer.
According to Lemma 2.3 and (2.5), k£ > 2 and (10/k) = |f2|/|z2| > 2. This implies that 2 < k < 5.

(I1.2.a.1) Assume that k = 2. Then (fi) = (z1?) and A is isomorphic to a type of (2a).

(I1.2.a.2) Assume that k = 3. Then |f2| = (10/3)|x2|, and hence f; € (z1). This implies that |f1| is
some integer multiple of |zs|: |fi| = m|z2|, where m is an integer with 2 < m < 3. This implies that
m = 2, and hence

(fi, f2) = (z2® + az,®,2:°) (e € Q).
If a = 0, then A is isomorphic to a type of (2b). If a # 0, then A is isomorphic to a type of (5) of
Theorem.

(I1.2.a.3) Assume that k = 4. Then |fo| = (5/2)|z2/|, and hence f; € (z1). This implies that |fi] is
some integer multiple of |z2|: |fi| = m|z2|, where m is an integer with 2 < m < (5/2). This implies
that m = 2, and hence

(f1,f2) = (2% + azi?, bz + cz313) (a,b,c€ Q;ac® + b #0).
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Suppose that ¢: Q[z1, Z2]/(f1,1, f1,2) = Qlz1, 22]/(f2,1, fa,2) is an isomorphism, where fi1 = z2%+a;z,4,
fiz = biz1® + cizi®zy and o(z1) = pz1, ©(22) = paz1? + ¢332 (as, 8i,t5,p,p2 and g € Q;i = 1,2). Then

p2 = a1p* — a2q® = bicop® — byc1q = 0.

If a = ¢ =0, then A is isomorphic to a type of (2b). If a = 0 and bc # 0, then A is isomorphic to a type
of (6) of Theorem. If abc # 0, then A is isomorphic to a type of (7) of Theorem. If ¢; = 0 and a;b; #0
(1 =1,2), then we can assume that b; = b, = 1. This case corresponds to that of (8) of Theorem. If
b; = 0 and a;c; # 0 (i = 1,2), then we can assume that ¢; = ¢, = 1. This case corresponds to that of
(9) of Theorem.

(I1.2.a.4) Assume that k = 5. Then |f3| = 2|z,| and |zo| > (5/2)|z1|. Set |zo| = ml|zy| (m > 5/2).
If m = 3, then

(f1, f2) = (az1?x2 + b1 %, cx9? + dz1 %20 + €21%) (a,b,c,d,e € Q).
If a = 0, then A is isomorphic to a type of (2b). If a # 0, we can set
(f1, f2) = (21222, 2% + e:1%) (e € QX).
This case corresponds to that of (10) of Theorem. If m = 4, then
(f1, f2) = (az1z2 + bz15, cxo? + dz1 %z + ex,®) (a,b,c,d,e € Q).
If a = 0, then A is isomorphic to a type of (2b). If a # 0, we can set
(fis o) = (2122, 2% + ex:®) (e € Q).

This case corresponds to that of (11) of Theorem. Otherwise, 4 is isomorphic to a type of (2b).

(IL.2.b) Assume that |f| is not an integer multiple of |z1|, and it is some integer multiple of |z2]:
|f1| = kl|z2|, where k is an integer. Then (fi) € (z2), and hence |f2| is some integer multiple of |z;|:
|f2| = m|z,|, where m is an integer. Then 2 < k < m and km = 10. This implies that (k,m) = (2,5),
and hence A is isomorphic to a type of (2b).

(IL.2.c) Assume that |f1] is not an integer multiple of |z1| and it is not an integer multiple of |z2]-
Then (f1) € (z122), and hence | f2| is some integer multiple of |z, | and |zs|: |f2| = k|zy| = m|zz|, where
k and m are integers with 2 < m < k. It follows from (2.5) that |z;| = (m/10)|f1| and |&2| = (k/10)|f1].
Since |f1| > |z1| + |z2|, we obtain m + k < 10. Noting that m # 2, k # 5 and k # 2m, we see (m,k) =
(3,4), (3,7) or (4,6). If (m,k) = (4,6), then

(f1, f2) = (z172,22* + az,%) (a € Q).
This case corresponds to that of (12) of Theorem. If (m, k) = (3,7), then
(a € Q),
= (3,4), then

(f1, f2) = (z122,22° + az1")
and A is isomorphic to a type of (13) of Theorem. If (m, k)
(f1, f2) = (21%%2,22% + az1*) (2 € Q%),
and A is isomorphic to a type of (14) of Theorem.
(IIT) After this, we consider the case of n = 3. ;From (2.1),

(2.6) Lfal - [f2] - [ fs] = 10|21 ] - |25 ] - |s).
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There are following types which correspond to that of (15) of Theorem:

(150') Q[zl,$2,m3]/($12,$2$3,$23 +$32))
(15b) Q[z1, 29, 73]/ (T22, 2123, 71° + 237)
and

(15¢) Q[z1, T, 73]/ (232, T122, 71> + 227).

If |z1| = |z2| = |23, then |fi|/|zi] > 2 (i = 1,2,3) are integers. This contradicts to (2.6). Hence
|z1| < |z3| and there are only three possibilities: |z1| = |22 < |z3|, |21| < |z2| = |z3| and |z;| < |z2| <
|zs|.

(IIL.1) First, we consider the case |z;| = |z2| < |z3].

(IIL.1.a) Assume that |f1] is an integer multiple of |z3|: |fi| = k|z2|, where k is an integer. According
to Lemma 2.3 and (2.6),

20za| < A1l < 1Aal- (1 fal /2le2]) - (1 fs]/2les]) = (5/2)lz]-

Then k = 2 and |fa| - |fs| = 5|z2| - |z3|. Since |z2| < |23|, f1,f2 € (#1,22). Then |f3] is an integer
multiple of |z3|: |fs| = m|zs|, where m is an integer with 5/2 > m > 2. So m = 2 and |f2| = (5/2)|z2]-
This implies that |f;| = |z2| + |z3|, and hence |z3| = (3/2)|zz|. Hence we may assume that f, =
212 + az9?, fo = Tox3 and fz = 3% + br1z2? + cx2® (a,b and ¢ € Q; ab? + ¢ # 0). Suppose that

p: Q[fl?l, $2,$3]/(f1,1, f1,2, f1,3) — Q[xl, Z2, 5'73]/(f2,1, f2,2, f2,3)

is an isomorphism, where f;; = z12+a;x92, fio = T2T3, fiz = T32 + bz 222 +¢ima®, o(x:) = pi%1 +qita
and ¢(z3) =rz3 (r(P1g2 — @1p2) # 0; ai, b, ci, pi, ¢i and r € Q for i = 1,2). We obtain

pr=q1 = aapi? — a1go% = bor? —bipige® = car® — 12 = 0.

Ifa = b =0, then ¢ # 0 and A is isomorphic to a type of (15a). If a = 0 and bc # 0, then A is isomorphic
to a type of (16) of Theorem. If ¢; = c; = 0, Then ajasb1b2 # 0 and we may assume that b; = by = 1.
Then r2 = pig2° and a1¢2% = agr?. This case corresponds to that of (17) of Theorem. If abc # 0, then
A is isomorphic to a type of (18) of Theorem. If ajazcic; # 0 and b, = by = 0, then we may assume
that ¢; = c2 = 1. Then 72 = ¢33 and azp1? = a1¢22. This case corresponds to that of (19) of Theorem.

(II1.1.b) Assume that |fi| is not an integer multiple of |x2|. Then fi € (z3). So |f2| is an integer
multiple of |z3|: |fa2] = m|z2|, where m is an integer with m > 3. This implies that |fi| > 2|z2],
|f2| > 3|z2| and |f3| < (10/6)|z3|. This contradicts to the fact 2|z3| < |f3]-

(I11.2) Secondly, we consider the case |z1| < |r2| = |z3|.

(II1.2.a) Assume that |f1| is some integer multiple of |z1|. Then |fi| = 2|z1| and (f1) = (z1%). So
|f:|/|z;| is an integer with |f;|/|zi| > 2 (i = 1,2,3). This contradicts to (2,6).

(I11.2.0) Assume that |f;| is not an intéger multiple of |z;|, and it is some integer multiple of |z5].
Then |fi| = 2|z2|, and hence
(5/2)|z1| 2 |fi| 2 2lz2| > 2]@1| (1=1,2,3).

So (fi, f2, f3) C (z2,z3). This contradicts to the fact dimq A < oo.

(IT1.2.c) Assume that |fi| is not an integer multiple of |z1|, and it is not an integer multiple of
|z2|. Then |fi| = |z1| + |z2| and fi € (21). So |fo| = |fs| = 2|wa|. We can set f = 2123, f2 =



Graded commutative Q-algebras Q[x,, ..., %]/ (f, ..., f,) of dimension 10 over Q 17

23 + azy? + by 3, f3 = cxaxs + dzo? + €213, (a,b,¢,d, and e € Q; e # 0, (e,d) # (0,0)). Suppose that
¢:Q[z1,22,23)/ (f1,1, fi» fr8) = Q[z1, 22, 23]/ (f2,1, f2,2, f2,3)

is an isomorphism, where f,',l = 2122, fi,z = 11:32 + aix22 + bi$13 and fi,3 = CiTox3 + d¢$22 + 6,‘(1713,
@(z1) = pa1, p(23) = a2 +7273 and p(x3) = gsT2+7323 (p(gars—rags) # 0; ay, bi,ci,di e, p,q2, 43,72
and r3 € Q; i =1,2). Then .

2 2 2 3 _ _ 3 _ 2 3 _
93 = T2 = a2r3” — 0a102” = borg® — bip® = c1der3 — cadiq2 = cr€20or3 — c201D° = dieaqe? — doerp® = 0.

If ¢ = 0, then d # 0 and we can assume that a =d—1=0.If b = ¢ = 0, then A4 is isomorphic to a
type of (15¢). If ¢; = c; = 0 and b1by # 0, then we may assume that e; = e, = 1. Then p® = g2 and
bars? = byge®. This case corresponds to that of (22) of Theorem. If ¢ # 0, then we can assume that
d=c-1=e—-1=0and a#0.If b+ 0, then 4 is isomorphic to a type of (21) of Theorem. The case
b = 0 corresponds to that of (20) of Theorem.

(IIL.3) Lastly, we consider the case |z;| < |z2| < |z3].

(IIL3.a) Assume that |f; | is an integer multiple of |z;|. Then |f;| = 2|z,|, (f1) = (z1%) and |fo|-| f3| =
Slz2| - |zs|-

(II1.3.0.a) Assume that |f;| is an integer multiple of |22|. Then |fa| = 2|z5), |f3| = (5/2)|z3| and
|f2| = 2|z3|. So |22| = |23|. This contradicts to the fact |z5| < |z3].

(II1.3.a.b) Assume that |f,| is not an integer multiple of |z2|. Then |f3| is an integer multiple of |z,|:
| f3] = k|z2|, where k is an integer with k > 3. So |fa| = (5/k)|z3), |f3] = 2|z3| and [fa] > |@2|+ |z3] =
((k +2)/5)| f|. Hence k = 3 and A is isomorphic to a type of (15a).

(IIL3.b) Assume that |fi| is not an integer multiple of |z;|, and it is an integer multiple of |z5|.
Then |f1| = 2|x2| and | fo| - | fs| = 5|z1] - |xs].

(II1.3.b.a) Assume that |f,| is an integer multiple of |z;|. Then |f,| = klz:| (3 <k € Z)and |fs| =
(5/k)|z3| < 2|z3|. This contradicts to the fact 2|z3| < |fa].

(IT1.3.b.b) Assume that |f;| is not an integer multiple of |z;|. Then | f3| = klz1| (3 < k € Z) and

|fol = (5/K)|zs]. So | fs| = 2|zs| and |f2] > |@1|+ |3 = ((k+2)/5)|fo|- Hence k = 3 and A is isomorphic
to a type of (15b).

(ITL.3.c) Assume that |f,| is not an integer multiple of |z, |, it is not an integer multiple of |z2| and
fi & (z1,22). Then |fi| = 2|zs| and |fo| - |f3| = 5|21] - |3

(IIL.3.c.a) Assume that |f2| is an integer multiple of |z;|. Then |fol = Klz1] (3 < k € Z) and |f3] =
(5/k)|z2| < 2|zs|. This contradicts to the fact 2|3 < |f3).

(IIL.3.c.b) Assume that |f2| is not an integer multiple of |z;|. Then |fs| = kl|z1| (3 < k € Z) and
|f2| = (5/k)|z2| < 2|22|. This contradicts to the fact 2|x,| < | f2-

(ITI1.3.d) Assume that |f,| is not an integer multiple of |z1], it is not an integer multiple of |z3| and
f1 € (z1,2).

(II1.3.d,a) Assume that |f,| is an integer multiple of |z, |. Then | fol = klz1] (3<k €Z)and |fy] <
(5/k)|z2|. This implies that k = 3, (f1) = (z123), |f1| = (5/2)|z1], and hence |fo| - | fs| = 4|zs] - |z3|. So
|fil/|z:] = 2 (i = 2,3). We can set f; = 2125, fa = 252 + a1 3 + b1 73, f3 = 32 + eyt ((a,e) # (0,0),
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(a,b) # (0,0)). If b = 0, then A is isomorphic to a type of (15c). If b # 0, then we may assume that
a =b—1=0. This case corresponds to that of (23) of Theorem.

(I11.3.d.b) Assume that |fa| is not an integer multiple of |z:|, and it is an integer multiple of |z,|.
Then |f;| = 2|z2|, |fs| = k|z1| (3 < k € Z) and |f1] = (5/k)|xs|. This implies that | fa| = 2|zs], [f1] =
(5/2)|z1| and f1 € (z1). So (f1) = (z1%3) and k = 3. A is isomorphic to a type of (15b).

(II1.3.d.c) Assume that |f,| is not an integer multiple of |z;|, and it is not an integer multiple of
|Z2|. Then |fs| = k|z1| = m|zs| (3 < m < k;k,m € Z). So |fi] < (5/k)|zsl, |f1] < (5/2)|z1| and
(f1) = (z122). Since |za|+ |z3| > ((m + 2)/5)|f2| > |f2l, f2 € (z1) D (f1). This contradicts to the fact
dimgA < oo.

This completes the proof of Theorem.
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