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An analogue of Hardy’s theorem on the Poincaré disk
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We generalize a theorem of Hardy for the Fourier transform on the real line to the Fourier transform on the Poincaré

disk.

Introduction

Hardy’s theorem for the Fourier transform [3] as-
serts that f and its Fourier transform f cannot both
be very small. More precisely, let p and g be posi-
tive constants and assume that f is a measurable 2func-
tion on the real line satisfying |f(z)] < Ce~?*" and
|f(y)] < Ce=®" for some positive constant C. Then
(D) f=0ifpg>1/4;2) f = Ae=?=" for some con-
stant A if pg = 1/4; (3) there are infinitely many f if
pg <1/4.

Sitaram and Sundari [8] generalized part (1) of
Hardy’s result to semisimple Lie groups with one
conjugacy class of Cartan subgroups and to the K-
invariant case for general semisimple groups. There
are several works that extend the result of Sitaram and
Sundari to more wider classes of transforms.

In this paper, we prove an analogue of Hardy’s the-
orem on the Poincaré disk, which contains all state-
ments (1), (2), and (3). The key idea is to estimate a
function f by the heat kernel. In the case of the clas-
sical Fourier transform on the real line and the Hankel
transform, the heat kernel is a dilation of e~°/2 and
it’s image under the transform is of the same form. In
the case of semisimple Lie group, it is not the case and
it is natural to change €% in the assumption of the
theorem by the heat kernel on the Poincaré disk. Using
upper bound for the heat kernel, the result of Sitaram
and Sundari for the Poincaré disk follows as a corollary
of our result.

1 Preliminaries
In this section we review on some results on har-
monic analysis on the Poincaré disk. We refer the
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1do(2) is four times the Riemannian structure given in [4).

reader to Helgason [4] and Terras [9] for details.

1.1 The Poincaré disk D
Let D be the open disk |z| < 1 in C with the Rie-
mannian structure!
dzdy
(1—a2 —y2)2’

where z = z +4y. Then the Laplace-Beltrami operator
is given by

_la_gp (89
L=31-2 y)(6x2+6y2' (1.2)

Let B be the boundary of D and let db be the cir-
cular measure on B given by

do(z) =4 (1.1)

1 27 i0
/Bf(b)clb_—27r A f(e*)ds.
The group

G=SU(1,1)= {g: (g ;) :al? - b = 1}
acts on D by

az+b
z=z .
bz+a
The action is transitive and the isotropy subgroup at o
is K = SO(2). Thus

D ~G/K.

The Riemannian structure do(z) and the Laplacian L
is invariant by the action of G.
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1.2 The Poisson kernel

A horocycle is a circle in D that is tangential to B.
For z € D and b € B let (2,b) = *d(o,£), where §
is a horocycle such that z € £ and the sign is + or —
according to the fact that o is outside or inside . Then

1-|2?
|z - b[?
is the classical Poisson kernel. Complex powers of

the classical Poisson kernel are eigenfunctions of the
Laplace-Beltrami operator. Namely

e(zrb) =

for u € C.

1.3 The spherical function
A function f on D is called radial if
f(tanh § %) = f(tanh £) forallr >0, 0 € R,

i.e. f(z) = f(|z|) forall z € D.
The function

bu(z) = / elint1)(z:b) gp
B

is called the spherical function. It is a unique radial
function on D such that f(o) = 1 and

Lf=-(u*+3)f.
Radial solutions of (1.4) satisfy

(1.3)

(1.4)

*f of 2.1
Bz +cothr§ = —(p + Z)f’
hence
¢u(tanh § e) = P_y_;,(coshr),
where

P,(z) = F(-v,v +1;1;(1 — 2)/2)

is the Legendre function of the first kind.
The spherical Fourier transform of a radial function
f on D is defined by

) = /D F(2)p—n(2)do(2).

In the coordinates (7, 6) we have
do(z) = sinhrdr df

(1.5)

and
f(p) =27 /oo f(tanh Z)P_ L4ip (coshr)sinhr dr.
The inver:ion of the spherical transform is given by
f(tanh(r/2))

1 ®
=5 /0 F(#)P_y i, (coshr)p tanh mp dps.

1.4 The Fourier transform on D

We define the Fourier transform of a function f on
D by

Flu,b) = /Df(z)e‘“’“%"""’)da(z), (1.6)

where p € Cand b € B.
If f € C°(D), then

f(z) = %/ / (s b)e(m"'%)(z’b)u tanh p db dp.
RJB
1.7

The map f — f(u,b) extends to an isometry of
L?*(D,do(z)) onto

L*(R x B, (47) " utanh 7u du db). A

1.5 K-finite functions
Let m € Z. The eigenfunctions f of L satisfying

f(e?z) =™ f(2) (1.8)

are the constant multiple of the function
Pum(z) = / et B)zbly (b)db, - (1.9)
B

where 4 € C and xm(e*®) = e'™¢. In particular,
u,0 = Pp.

If a function f on D satisfies f(e?z) = e'™? f(2),
then

Flu,b) = /D F(2)p—p—m(2)do(2).

Thus f(u,b) does not depend on b, In particular,
f(u,b) is the spherical transform f(u) of f, if f is
aradial function on D.
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1.6 The heat kernel

Let u = u(z,t) be a function on (2,t) € H x
(0,00). We consider an initial value problem of the
heat equation on H

Ut = Lzu
u(z,0) = f(2),
where f is a radial function on D.
Fort > 0 let G(z) be the radial function on D that

is the inverse image of e~(#*+1/9)t under the spherical
transform. Thus
. 1
Gy(p) = e~ W+, (1.10)

Then
u%ﬂ=ﬁ*®%ﬁ=£f@%MMMwW)

is a solution to the above initial value problem. Here
g-o=z.
The heat kernel is given by the formula
Gi(tanh T) =(4t)~3/2/2¢e~/4
R 86_82/ (4t)

x —_—
» +/coshs —coshr

Davies and Mandouvalos [1] proved that

ds. (1.11)

G:(tanh %)
~tRe T E Q4 r 40 H (14T, (L12)

uniformly for 0 < 7 < oo and 0 < ¢t < o0o. Here we
write f ~ g when there is ¢ > 0 such that

clf<g<ecf
for all values of variables in the domain.

2 An analogue of Hardy’s theorem

We now state and prove an analogue of Hardy’s
theorem for the Fourier transform on D.

Theorem 2.1 Let p and q be positive constants. Sup-
pose f is a measurable function on D satisfying

|f(2)] < CGZ%(z) forallz € D @.1
and
|F(1,b)| < Ce™® forallAeR,be B, (22)

where C is a positive constant. Then we have following
results:

(1) Ifpq > 1/4, then f = 0 almost everywhere.

(2) Ifpg = 1/4, then f(u,b) = h(b)e~ %", where h
is an arbitrary bounded function on B.

(3) If pq < 1/4, then there are infinitely many such
functions f.

Proof. By (2.1) and (1.10) we have

Fw bl < [ 64 (@etm+Dends(z)
D P

= Cellmn)®~1/4)/(4p)

(imp)?
=C'e %

(2.3
for all u € C. For fixed b, f(u,b) is a holomorphic
function of 1 € C.

If we can prove (2), then (1) is self-evident.

We will prove (2). If pg = 1/4, then by using the
Phragmén-Lindelof theorem, (2.2) and (2.3) imply

F(p,b) = h(p)e~®*,

where the function h(b) is bounded. See Dym and
McKean (2, Section 3.2] for details. Conversely if
f(p,b) is given by (2.4) and h is bounded, then we
can show (2.1) by using the inversion formula (1.7).
For (3), choose p < p' < 1/(4q) and let f(2) =
G ﬁr(z). It is easy to see that f(z) satisfies (2.1) by

using (1.11). Moreover f(p, A) = e~ (W +1)/(49') gat-
isfies (2.2). O

2.4)

Remark 2.2 If pg = 1/4, then
f(tanh § €¥) = xm(e")G,(tanh §)
satisfies conditions (2.1) and (2.2) of the theorem.

We may replace G;(z) in the right hand side of
(2.2) by the right hand side of (1.12). As a corollary
we have the following result of Sitaram and Sundari
[8] in the case of D.

Corollary 2.3 Let p and q be positive constants. Sup-

pose f is a measurable function on D satisfying (2.2)
and

|f(tanh gei9)| < Ce P forallr > 0andf € R,

where C is a positive constant.
If pq > 1/4, then f = 0 almost everywhere.

Proof. Choose p > p' such that p'q > 1/4. Then the
is a constant C’ such that

e < CleP T T2(1 o r 4 1/(4p))"2(1 + 7).

By (1.12) we can apply part (3) of Theorem 2.1. O
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Concluding remarks

We can generalize our result to the hyperbolic
space H™. We hope our idea is applicable to general
semisimple Lie groups. Moreover it is of interest to
consider the case of the Jacobi transform. We will
come back to these subject elsewhere.

Acknowledgment

The author thanks Professor S. Koizumi, S. Mu-
rakami, T. Nomura, T. Oshima, and S. Takenaka, who
gave helpful comments on our previous works [6, 7, 5]
and motivated this work.

References

[1] E. B. Davies and N. Mandouvalos, Heat kernel bounds
on hyperbolic space and Kleinian groups, Proc. Lon-
don Math. Soc. 57 (1988), pp. 182-208.

[2] H. Dym and H. P. McKean, Fourier Seres and Inte-
grals, Academic Press, San Diego, 1972.

[3] G. H. Hardy, A theorem concerning Fourier trans-
forms, J. London Math. Soc. 8 (1933), pp. 227-231.

[4] S. Helgason, Groups and Geometric Analysis, Aca-
demic Press, New York, 1984.

[5] H. Sakase, An analogue of Hardy's theorem for the Ja-
cobi and Hankel transforms (in Japanese), Master The-
sis, Okayama University of Science, 2000.

[6] N.Shimeno, A note on the uncertainty principle for the
Dunkl transform, preprint.

[7} N. Shimeno, An analogue of Hardy's theorem for the
Heckman-Opdam transform, preprint.

[8] A. Sitaram and M. Sundari, An analogue of Hardy's
theorem for very rapidly decreasing functions on semi-
simple Lie groups, Pacific J. Math. 177 (1997), pp.
187-200.

[91 A. Terras, Harmonic Analysis on Symmetric Spaces
and Applications 1, Springer Verlag, New York Berlin
Heiderberg Tokyo, 1985.



