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Let A be a finitely generated and birational extension of a Noetherian domain R whose generators
are super-primitive or anti-integral. In this paper we will determine the relationship between the unit
groups U(R) and U(A) (Theorem 3) and the kernel of the homomorphism of the Picard groups Pic(R)
into Pic(A) (Theorem 7).

In this paper a ring will mean a commutative ring with the identity element. An integral domain will
stand for a ring without non-trivial zero-divisors.

Let R be a Noetherian domain and R[X] a polynomial ring in an indeterminate X over R. Let K be the
quotient field of R and L an algebraic extension of K. Let a be an element of L. We denote by 7 the R-
homomorphism of R[X] into R[a] defined by m(X) = a. Let ¢o(X) be the monic minimal polynomial of
aover K and d = the degree of ¢4 (X). We will write ¢o(X) of the form ¢o(X) = X4+ m X414 4y
where 7y, ---,74 are elements of K. Then n; (1 < ¢ < d) are uniquely determined by a. We will set
Iy =R:p ni={a€R;an €R}, Iy :=nL,I,,.

We will call I}, the denominator ideal of . It is easily seen that Ita] = R[X] :r ¢a(X). Note that
Ilq) = I if @ is in K. We say that a is anti-integral over R if Ker(m) = Ijaj¢aR[X]. The notion of
anti-integral property is introduced in [4] in the case of birational extensions, and subsequently in [3] in
the case of higher degree extensions. We know that an element « of K is anti-integral over R if and only
if R = R[e] N R[a7}].

Let f(X) be an element of R[X]. We denote by ¢(f(X)) the ideal of R generated by all coefficients of
f(X). Let J be an ideal of R[X] and c¢(J) the ideal of R generated by all coefficients of elements of J. If &
1s anti-integral over R, then we know that c(Ker (7)) = c(Io] $a(X) R[X]) = Iiq(1, m, -+, 1a) Where
(1, m, ---, n4) is an R—module generated by 1, 7y, ---, n4. We will set Jay = Iiog(1, M, -+, na)-

Let Dp;(R) be the set of all prime ideals p of R such that depth(Rp) = 1. An element « is called
super-primitive over R if Jio) ¢ p for every p of Dp,(R). We will use J, instead of Jia) In case a is in K.
Sometimes we will use Ir, o and Jg, o instead of I, and J, respectively. If o is super-primitive over R,
then o is anti-integral over R (cf. [3]). By the definition super-primitive property is characterized by the
set Dp, (R).
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Throughout this paper we will use the notation above unless it is specified. Our terminology is a
standard one and we can refer to [2].

Let U(R) be the unit group of a ring R. Our first purpose is the calculation of U(A) in the case the ex-
tension A/R is finitely generated and birational. Our key Proposition is the following (cf. [1, Proposition

1)).

Proposition 1. Let R be an integral domain with the quotient field K. Let a be an element of K
such that o is anti-integral over R. Set A = Rla], V(Ia) = {p € Spec(R); Io C p} and Ty = {p €
Spec(R); p+ Jo = R}. Then V(I4) NT,, = {p € Spec(R); pA = A}--- (¥).

By Proposition 1 we obtain the following:

Proposition 2. Let R be a Noetherian domain with the quotient field K. Let o be an element of K
such that o is super-primitive over R and set A = Rla]. Let Io = ¢1N---Ngn, rad(g;) = p; (1 < i< n) be
the irredundant primary decomposition of an ideal I,. If pi+Jo = R (1 < i < n), then U(A)NR = U(R).

Proof. Let p be a prime ideal of R satisfying depth(R,) = 1. First we will show that pA # A. Suppose
the contrary. Then the equality (*) in Proposition 1 implies that I, C p. Since a is super-primitive over
R, we have (I,), = =R, for some element z of p (cf. [3, Theorem 2.11}). Then p is a prime divisor of I,
because zR, C pR, and depth(R,) = 1. Hence p = p; for some ¢ with 1 < 7 < n. By the assumption we
see that p + Jo # R. This contradicts the fact p € T, .

We will show that U(A) N R = U(R). The inclusion U(A) N R D U(R) is obvious, so we will prove
the converse inclusion. Let @ be an element of R such that a is not a unit of R. Then there exists a
prime divisor p of aR because aR # R. Note that depth(R,) = 1 (cf. [6, Proposition 10]). The former
half of the proof shows that pA # A. This implies that aA # A, that is, a is not a unit of A. Hence
U(A)NRCU(R). O

Theorem 3. Let R be a Noetherian domain with the quotient field K. Let ay,---,an be elements of
K and set Ry = R, R; = R[o1, ---, a;] (1< i< n)and A= R,. Assume that a;y1 1s super-primitive
over R; for 0 < i < n— 1. Let I, o, be the denominator ideal of ;11 in Riy1 = Ri[aiqi] and
JRieim = IRiaign (L @ig1). Let Ip; oy = ¢i1 N -~ Ny, be the irredundant primary decomposition of
IR, aiy,- If tad(gsi,;) + JRijaiys # Ri forall 0<i<n—1and 1<j<t hold for the ring eztension
Rit+1/Ri, then U(A) N R = U(R).

Proof. We may apply Proposition 2 to the ring extension Riy1/R; (0<i<n-1). O

Remark 4. Let R be a Noetherian domain with the quotient field K. Let a be an element of K which
is anti-integral over R and set A = R[e]. It is easily seen from Proposition 1 that aA = A if and only if
rad(aR) D I, and aR+ J, = R for an element a of R. Therefore we get U(A) N R = U(R) if the following
condition holds: let a be an element of R satisfying ¢ ¢ U(R), then

(1) rad(aR) D I
or

(2) there exists a prime ideal p € Assg(R/aR) such that p+ J, # R.

If I, # R, then there exists an element  of R such that p = I, : £ = I;,. This means that we can
take I, = p for the extension Ry = R C R; = R[za] C A.
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In this case we don’t know whether za is super-primitive over R or not.
We will consider a sufficient condition for U(A4) = U(R).

Proposition 5. Let R be a Noetherian domain with the quotient field K. Let a be an element of
K which is super-primitive over R and set A = Rla). If I, is a prime ideal of R and J, # R, then
U(A) = U(R).

Proof. Set I, = p. Let 8 be a unit of A. Then we can write 8 = f(a) and 8~! = g(a) for f(X), g(X)
in R[X]. Furthermore write

f(X)=a+a1 X+ --+a,X" (a; € Rand 0 < i< m)and g(X) = bo+ b X +---+bnX™ (bj € R and
0 < j < m). We may assume that m and n are minimal. By Proposition 2 we know that U(A)NR = U(R).
If n =0, then 8 = a¢ is in U(A) "R = U(R). If m = 0, then B~ = bo is in U(4) N R = U(R),
hence § is in U(R). So we may assume that n > 0 and m > 0. From the fact 1 = f(a)g(a) we get
1- f(X)g(X) € Ker(m) = Io(X — a)R[X]. This implies that a,bn € I, = p. Since p is a prime ideal,
we know that a, is in Iy or by, isin I,. So an—1 +apaisin R or by_; + bpa is in R. Note that

B=ao+ara+- -+ (an-1 + ana)a !
and

B~l=bg+bia+ -+ (bpy + bpa)a™ L.
This contradicts the minimality of n and m. So we get the required result. O

Next we will consider the case [, is a prime ideal and J, = R.

Proposition 6. Let R be a Noetherian domain with the quotient field K. Let a be an element of K
which is super-primitive over R. Set A = R|a] and assume that I, is a prime ideal of R, say, p and
Jo = R. Then:

(1) If there exists an element a of R such that rad(aR) = p, then A = R[1/ad].

(2) Ifrad(aR) # p for every element a of R, then U(A) N R = U(R).

Proof. (1) By the equality (*) in Proposition 1 we have aA = A because rad (aR) D I, = p and
Ja = R. Hence R[1/a] C A.

Let 3 be an element of A. Then by the assumptions, we see that a is in rad (aR) = p = I,. This shows
that ac is in R. Hence there exists a natural number r such that a"4 is in R. This implies that B is in
R[1/a], and so R[1/a] C A.

(2) Ifrad (aR) D p, then rad (aR) = p by ht(aR) = 1. This conradicts the assumption of (2). Therefore
U(4) N R =U(R) by Remark 4.

Let A/R be the extension of integral domains and & the group homomorphism of the Picard groups
Pic(R) into Pic(A) defined by ®(I) = TA where I is an invertible ideal of R and — denotes the residue
class modulo non-zero principal ideals.

We can now calculate the kernel of ®. If an element « is in K and J, = R, then R = J, = I,(1, a)
and so I, is an invertible ideal of R.

Theorem 7. Let R be a Noetherian domain with the quotient field K. Let « be an element of K such
that a is anti-integral over R. Set A = R[a] and let & be the group homomorphism of Pic(R) into Pic(A).
Assume that I, is a prime ideal, say, p and Jo, = R. Then Ker(®) =< § >= Z/tZ where < p > denotes
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the subgroup of Ker(®) generated by the residue class of an invertible ideal p, t = min{i;p’ is principal
} if there exists a natural number i such that p* is principal and t = 0 if there is no such i.
Moreover, the homomorphism ® is injective if and only if p is principal.

Proof. Let F be an integral invertible ideal of R such that FA is principal and set FA = f(a)A with
F(X) in R[X]. We will divide into two cases to prove the assertion.

Case (1): f(a) is in R, say, f(a) = a.

Set H=a"'F. Then HA = (a"'F)A = a='aA = A. Let 3 be an element of A. Then there exists a
natural number r such that p"8 C R because I, = p and A = R[a] by the assumptions. Since HA = A,
we have H C A. Hence H is a finite R-module. Therefore p" H C R for some natural number n. We
will take n as the smallest one such that p" H C R. Assume that p"H # R. Then pA = A because
R = Jo = Ia(1, @) = p(1, a). Hence (p"H)A = p"A = A because HA = A. By the equality (*) of
Proposition 1 we get rad (p"H) D I, = p. Since p and H are invertible of R, so is p® H. Furthermore
ht(p"H) = 1 because p"H C R. Hence rad (p"H) = p. This implies that p"H C p. Therefore
p"~'H =p~1p"H C p~'p = R. This contradicts the minimality of n. Hence p*H = R. This shows that
H = p~", and hence Ker(®) =<7 >.

Case (2): f(a) is not in R.

Set n = deg((f(X)) and we will take n as the smallest one such that FA = f(a)A. Note that n > 0.
Set H = {b € R; bf(a) € F}, then H is an ideal of R. We will prove F = f(a)H. It is clear from the
definition of H that F D f(a)H. Let a be an arbitrary element of F. Then we can write a = f(a)g(a)
for some g(X) in R[X]. Set m = deg(g(X)). If m =0, then g(a) isin H and a is in f(a)H. So we may
only consider the case m > 0. We will take m as small as possible such that ¢ = f(a)g(a). Since « is
anti-integral over R, we get f(X)g(X) — a € Ker(r) = I4(X — a)R[X]. Let c be the leading coefficient
of f(X) and y the leading coefficient of g(X). Then cy € I, = p. Since p is a prime ideal, we know that
cisin por yisin p. Hence ca is in R or ya is in R. This contradicts the minimality of n and m. So we
get F = f(a)H. Note that H C R. Therefore HA = (f(a)"!F)A = A. Assume that H # R. By the
equality (*) of Proposition 1 we have rad (H) D p. Since H is an invertible ideal, we know that ht(H)
= 1. Hence rad (H) = p, and H C p. So p~'H C R and p!HA = A. Continuing the argument above
for p~1H, we can reach the result p" = H for some non-zero integer n.

Though the following result is known, we will give a proof for the reference sake (cf. [5, Proposition
1]). Note that a birational extension A/R is flat if and only if Ap = R, for every prime ideal P of A
where p= PN R.

Proposition 8. Let R be an integral domain with the quotient field K and oy, -+, o, elements of K.
Set A= R[ay,---,a,]. Then A/R is a flat estension if and only if (Io, N ---NIs,)A = A.

Proof. We shall prove the” if " part. Let P be a prime ideal of A and set p = PNR. If p D I, N+ Nlq,,,
then P D (Ia, N---NIs,)A = A. Thisis absurd. Hence p I, N---NI,,. This implies that ay,---, a,
are in R,. Therefore A C R,. So we get Ap = R,. Hence the extension A/R is flat.

We shall show the " only if " part. Suppose that (Io, N---NI,,)A = A. Then there exists a prime ideal
P of A such that P D (Ia, N---NIy,)A. Set p=PNR. Then p D I4, N---NI,,. By the assumptions
the extension A/R is flat and birational. This shows that a1,---,an are in Ap = Rp. This contradicts
thefact p D I, N---Nly,. O
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Let R be a Noetherian domain with the quotient field K and F a fractional ideal of R. We will define
F1=R :x F.

Theorem 9. Let R be a Noetherian domain with the quotient field K. Let ay,---,apn be elements of
K which are anti-integral over R. Set A = R[ay,--,ay] and assume that the extension A/R is flat.

Then the following hold:

(1) Let I be an invertible ideal of A and set F = INR. Then F is a divisorial ideal of R and satisfies
rad (FF~Y) D Iy, N---N1,,,I = FA.

(2) Conversely, let F be an ideal of R such thatrad (FF~') D I,,N---NI,, . Then FA is an invertible
tdeal of A.

Proof. (1) First we will prove that F is a divisorial ideal of R. Let I = Q;N---NQ, be the irredundant
primary decomposition and set P; = rad (Q;) and p; = P,NR for 1 < i < m. Since I is an invertible ideal
of A, we know that P; is in Dp; (A) for 1 < ¢ < m. Furthermore, p; is in Dp, (R) for 1 < i < m because
the extension A/R is flat. Note that F = (Q;NR)N---N(Qm N R). We have Assp(R/F) C {p1, -, pm}.
By renumbering prime ideals py,---,pm, we may set Assp(R/F) = {p1,---,p:} (t < m). It suffices to
prove that ((F)~')"'R,; = FR,, for 1 < j < t because (F~!)~! O F. Since the extension A/R is
flat and birational, we know that Ay, = R,,. So write IAp; = aAp,; for some a in I. On the other
ha! nd, IAp; = Q;Ap; = (Q; N R)R,; = FR,,. Hence FR,, = aAp, = aR,,. Then (F 1) 'R,, =
((aRp;)"")"'Ry; = aR,, = FR,,. Hence (F~!)~! = F, and F is a divisorial ideal of R.

Next we shall show that FA = I. The inclusion I O FA is obvious. Since the extension A/R is flat,
we see that F'A is also a divisorial ideal of A. In fact F' = Iz, N---N1g, for some By, --, B, in K because
F'is a divisorial ideal of R. Hence FA= (Ig, N-- NIz )A=I5AN---N Ig, A= 1Tap,N---NIsg,., and
F A is also a divisorial ideal of A. Let P be a prime divisor of FA. Then P is in Dp;(A). Set p=PNR,
then Ap = Rp,. Noting that IN R = F, we obtain FA=N (FA)p = N\FAp = NFR, =N(IR, N R,) =
N(IAp N Ap) = NIAp D I where the intersection runs through all prime divisors P’s of FA. So we get
FA=1.

We shall prove the assertion rad (FF~1) D I, N---NI,,. Since F~! = R :x F and the extension A/R
is flat, we know that F~'A = A :x FA=A:x I =1I"'. Hence A = II-! = (FA)(F-'A) = FF-1A.
It is known from the property of the flat extensions that the morphism Spec(A) < Spec(R) is an open
immersion. Therefore Spec(R) — Spec(A) = V(Ia, N--- N I,,). Let p be a prime ideal of R such
that rad FF~! C p. Then pA = A because FF~'A = A. Hence p O Iy, NI, . This implies that
rad (FF~Y) D Iy, N---N1,,.

(2) Since rad (FF~!) D I4, N---NI,,, we have FF~1A = A by Proposition 8. Therefore FA is an
invertible ideal of A.
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