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Abstract

Physical consideration of the general linear solid leads to the differential general linear equation (DGLE).

The quasi-static case of creep gives a special solution of the DGLE. For any stress o € C, the general

solution of the DGLE is derived by using the convolution.

1. Introduction

The anelastic relaxation in solids is defined as a relaxation of the strain after the
applied stress. One of the important anelastic relaxations is the point-defect relaxation. If
there exists a point defect in a crystal, it may lower the original crystalline symmetry of
the perfect crystal. The symmetry around the defect is called the defect symmetry to
distinguish it from the lattice symmetry of the perfect crystal. If the set of all the defect
symmetries becomes a subgroup of the point group of all the lattice symmetries and
smaller than the point group, then an anelastic relaxation occurs.

The elasticity is a property of solid following Hooke's law and represented by the
Hookean spring. The linear viscosity is the property that the stress is proportional to the
strain rate, whose property is modelled by the Newtonian dashpot.

The anelasticity involves at least a Hookean spring and a Newtonian dashpot. One of
the simplest cases is a combination of the two models connected in parallel. This model is
called the Voigt solid. More realistic solid is the standard linear solid composed of a
Voigt solid and a Hookean spring in series. The Voigt and the standard linear solids are
models of a single relaxation. There often appears a multiple relaxation due to several

kinds of point defects in the crystal. Such multiple anelastic relaxation is observed as a
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superposition of creep curves in the quasi-static experiment and as a superposition of
peaks of internal friction in the dynamic experiment. The general linear solid, hereafter
abbreviated to GLS, is a model representing the multiple anelastic relaxation. The GLS of
order n consists of n Voigt solids and a Hookean spring all in series.

The GLS is expressed in the form of differential stress-strain equation, here called a
differential general linear equation abbreviated to DGLE. The DGLE has been considered

from various viewpoints'-*?

. Physical experiments always require simplified experiments
to obtain results without obscurity. In the study of anelastic relaxation in crystalline
solids™, there have so far been dealt with the quasi-static case of creep, elastic aftereffect
or stress relaxation and the dynamic case of internal friction under the condition of the
oscillatory harmonic stress. This paper considers the quasi-static case of creep from the
physical point of view, and the general solution of the DGLE is mathematically derived.

The dynamic case is discussed elsewhere'®.

2. Physico-Mathematical Solution in Quasi-Static Case of Creep
def
Let D, be defined as D, =d, +£ where d, = %, I the identity operator and 7 the
T

relaxation time. Then, D, : C(R) — C”(R) is a linear differential operator associated
with 7, here called a diffusion operator'®. The strain £=¢(t) (e R) is a C™function.
Let ¢, be the solution of the initial value problem: D_ e = %, £(0) =0. Uniqueness of the
solution for the initial value problem asserts well-definedness of ¢, . For simplicity, D,
and ¢ , are replaced by D, and ¢,, respectively. Similarly, y, is introduced as th;
solutio; of D,e=0, g0)=1.

In the ith Voigt solid the Hookean spring gives €, = 8/’ 6" where 8J% is the relaxation
of the compliance, o) the stress component for the spring, and the Newtonian dashpot is
specified by 7€, =0y’ where 7, is the viscosity expressed as 1, =7 /81, o’ the
stress component for the dashpot. The stress o = o + 0", then, leads to the differential
stress-strain equation of the ith Voigt solid:

Q)
Dg=—f-o0. ¢y
TG

90 O (o)
?'(’.-)——m+(0i D,-O"“TT;) R

[ o

Since D,(¢,0)= 0Dy, +¢,D0 -
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c
% < Do=—7 & do=0 & o:constant.

Proposition1 D,(p,0)= 70

[

Then, for a constant o, i.e., a creep under a constant stress o, & =8/ .0 is a special
solution of (1).

Proposition 2  In the creep of the Voigt solid, the general solution of (1) is represented
as

& =8I{ 9,0 +cy, (c;: constant).

Let &, be the elastic strain given by &, = J,0 with the unrelaxed compliance Jy, for the
Hookean spring attached to the n Voigt solids in the GLS. Hence,

Proposition 3 In the creep of the GLS, the total strain € is expressed as

£=zn:ei=(JU+zn"&lg)<p,.)a+iciwi (c;eR) . )
i=0 i=1 i=1

Let D,; be a differential operator composed of D, and D; such that D;=D,oD,,
corresponding to the two components of the Voigt solid connected in series with the ith
Voigt solid followed by the jth. The inverted system of the two Voigt solids connected in
the order of the jth followed by the ith, is completely of the same physical property as the
normal system. Then, D; =D, ie., D,o D, = D;oD,.

In the general linear solid of n Voigt solids, let D be a differential operator specifying

the GLS. Physically, the GLS doesnot depend on the order of connection of the Voigt
solids. Thus,

D= HoD o (Vs€Q8(n), 3)
where Qb (#) is the symmetrlc group of order n. D is anticipated to be
D=P(d zad"" (a=1,4,€R),

where g, is a polynonual of Q,,o,, -0, with a,.—l/ 70 and written as
;= a0, 0,, . ,).
By defining
def
saq; = ai(as(l)’as(z)""’as(n))’
eqn.(3) yields sa, =a, (Vs e Oﬁ(n)) Then, g, is represented in terms of the elementary

symmetric functions of ¢,,a,,-,e, (the fundamental theorem on symmetric functions).
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The simplest case is the case when each g, is the elementary symmetric function of degree
i. Then,

P(z)= Hz+a H(u })J or D= HoD P(d HD :

Equation (2) is, thus, the solution of the DGLE of order n in the creep:

n

1 “ ;
pe:EW(JU +§af,g>)o . @

The strain € of eqn.(2) represents a creep behaviour of the GLS under the constant applied

stress O'.

3. Convolution
Definitions and propositions related to the convolution to solve the single high-order
inhomogeneous constant-coefficient linear ordinary differential equation are summarized
based on Ref. 24). New description is given with proof.
Definition 4 The convolution of f and g for f,g € C°(R) is defined as
f* g(t)d:ﬂ f(t=s)g(s)ds .
Proposition 5
1  frg=g*f.
@ (frg)*xh=[*(g*h).
B)  (cf)*g=f*(cag)=c(f*g) (ceR).
Definition 6
5, 2d-Al.
Definition 7 The convolution associated with A (A € R) is an operator, ¥,, defined as

1(f)=e, *f (FeC'R)).

def

Here, e, =e .
Proposition 8

¢)) O,07,=1.

@ 11°8,(f)=f-ef(0) (fec°(R))
Proposition 9 For D= Ho6 =0, 08, 008, ,

D°(H°7’A.~)= I

i=1

Proof. By Prop. 8 (1), and the commutativity of §, 's or 7, s,
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n

(ﬁoali)‘,(ﬁ%):r[o(g% o7,)=1.

i=1 i=1 i=1

Proposition 10 Let f € C°(R) and D= H°5/1,~ .
i=1

8=H°71,(f)=ez., >l=e)~2 *'”*e).,, *f = D€=f.
i=1

Definition 11 '
e el e’ (m=0).
).,m '

Especially, e, , = el. .

Proposition 12 For i,m >0, .

, —_— 1 e e —_—
Y (e).,m) = mei 1€ € e Ko Xe ey =€) e

Especially, for m =0

i
. f—%
J pred 1 LN -_—
Y2 (e)_)—eu sle., e ke, k--ke *e, =e, .

Proposition 13 For A # u and i 21,

Cer e, )
A-p (i=1).

Yli(eﬂ)=*
~(l_ﬂ)i (e;, eﬂ)+;(l—ﬂ)j imj (i22).

Proof. Easy by mathematical induction on i.

0

19

Theorem 14 Let P(z)=][(z~4,) with A, # 4, (i # j). A special solution of P(d,)e = f

i=1

, denoted by 7, is
n

€ =H°7’1,.(f)=e)., *ey, *roxe, *f,
i=1

or

n

£*=.~2:{%8%*f . P(a)=T1(%-2).

j=1
J#i

Proof. The first half follows from Prop. 10. The rest is derived from

1 & 1 1
P(z) 2, P(A)z=2

1

r

Theorem 15 Let P(z)=][](z—4,)" with 4, # 4, (i # j) and ¥ m,=n. Then,
i=1 i=1
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1 _ r om—1 a,,,,,._,,, _ i _a_ m 1
P(Z) - ;,;)(Z _ /,«Li)m,--m ’ ai.m,—m - m! (aA’) IL[(A ~ Zw)”‘j ’
4 i j

and a special solution of P( ) =f, €,is expressed as

r m-—l
8 _Zzatm-mlm—ml f zza:mﬂelm
i=l m=0 i=]l m=0

The general solution ¢ is given by

r mp—1
EEEDY Y, (c,.'j € R) :
i=1 j=0
Proof. For D=6,", Doy,"(f)=f. Since v,"(f)=7,""(e,)* f =€, * f
€ =e,,  *f is aspecial solution of D& = f. Then, the theorem is readily verified. [

4. General Solution of DGLE
Let
0(2)= ib,,_,.z" (b;eR, b, #0).
Derive a special sc;l=|2tion of the DGLE: P(d,)e =0(d,)o for o € C*(R).
Proposition 16
(1) e *do=de, *0+(0-¢€,0(0))=2e, *o+(0 - e,0(0)) .

() dfe,*0)=2e,*0c+0=de, *c+0=¢, *do+e,0(0) .

Proposition 16 is proved by integration by parts, and the following corollary is immediately
obtained from Prop. 16 (1).
Corollary 17

e,*do=de, *0c < 0=0(0), .

Mathematical induction verifies Prop.18 by using e, *d/o = e, *d,(d/"'c) and Prop.16(1).
Proposition 18 For j>1,
j-1 -1
e, xdjoc=Ne,xo+Y ¥ ' 'd'o—e, Y ¥ 'd'c(0)
1=0 1=0

j-1 s=t
=Ne, o+ Y ¥ M4 o
1=0

5=0
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Theorem 19 In case P(z)=[[(z-4) (4 =4, (i= J)) , a special solution of the
i=1 .

DGLE is
s=0 }]

n

8* ZPI(A)l:be)' O'+2 n—]{)' el *0+22'J|Il(t s)dd

i=1

and the general solution is given by

£= 8+2‘ce;|~ (c,.eR).

i=1

Proof is obvious by Prop. 18.

Lemma 20

Proof.

e, *(1)= ‘e’“ds=—l 1-¢e* ——l 0
0 A /1

In particular, for a constant ¢ the following theorem is deduced.

Theorem 21 In case P(z)=[](z-4,) (/'L,. #A (i# ])) and o is constant, the general
i=1

solution of the DGLE is expressed in terms of ¢, and v, as

e= (JU + i&l,‘{’(o,.)c + iC;Wz (c;€R).
i=1 i=1

Proof. If o is constant, the DGLE becomes eqn. (4):

(ﬁoali )e - (I‘[ (—li)](fu + iwg’)a

i=1 i=1
with D= f[oali . From 8, (1)=-4,, D(1)= ]‘[ . By Lemma 20 and Prop. 8 (1),
i=1
D@, = D(y,,(<4,)) = (-1,) [ ]-6, ()= H
j=1j#i
Thus, !
e =Jyo+ dop,

i=1
is a special solution of the DGLE for a constant o ]
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Now, the discussion is proceeded to the general case of P(z)=[](z-4,)" (m; 21)

i=1
with Zm =n.
Proposmon 22 For j=21,
do= ('131,,- + ew_l) *o-e¢, ,0(0).

Proof. _
(e," ¥ d,O')(t) = J:(t;—'s)l e)'("‘)(ds()‘(s))ds

(t s)’ M=) s)

. +J' {(t )" M) 4 (t=s) _j's)j Ae“"s’}d(s)ds

=—e,_'j0'(0)+(e,1_j_1 +2.e“)*0' . 0

Mathematical induction on k for e, ; * d'o leads to the following theorem with care of the

largeness of krelative to .
Theorem 23 For k21,

S Wte,  ro-S e, ST e as0(0) (1k<j)
i\ bt B! l ' it
e,;*d'o=
Y L (kY ' (k=15 ciots s k=11 iy ,
2 ) A el']_,*o—iel_j_,z ] A dro(0)+ Y, . Wdle (i<k)
1=0 1=0 5=0 1=0 J
min{jk} [ f min{j,k-1} k==l — 1 — kel=j(f—1—1 )
R A T A o T S e P
o \U 1=0 5=0 i=0 J

ki (k—1-1 .
where the last summation ) ( j )/l""""d,’o is defined to be O for k<j, or
- 1=0

k-1<j.

The general solution of the DGLE is, therefore, readily attained.
Theorem 24 Incase P(z) = H ,

r m-1n r

£= ZZZ“:M i€, d0‘+22c”e“ (c,.,jeR).

i=1 j=0k=0 i=l j=0



Solving Differential Stress-Strain Equation of the General Linear Solid 23

References

1) Y. Iwasaki, T. Imanaka and K. Fujimoto, Theory of the K&, inverted and Collette torsion pendulums, J.
Phys. E, 10, 1050-1056 (1977).

2) Y. Iwasaki, T. Imanaka and K. Fujimoto, Absolute measurement of frequency and internal friction in the
case of torsion pendulums: K&, inverted and Collette types, Proc. 6th Int. Conf. Internal Friction and
Ultrasonic Attenuation in Solids, Univ. Tokyo Press (1977), pp803-807.

3) Y. Iwasaki and K. Fujimoto, Limits of applicability of the Collette torsion pendulum to internal friction
measurement, J. Phys. E, 12, 21-22 (1979).

4) Y. Iwasaki and K. Fujimoto, Theory of torsion pendulum of three components for measurement of Snoek
damping in sheet specimen, J. Phys. E, 12, 593-595 (1979).

5) Y. Iwasaki and K. Fujimoto, Resonant system of a torsion pendulum with anelastic solids of discrete
relaxation spectra, J. Phys. D, 13, 823-834 (1980).

6) Y. Iwasaki and K. Fujimoto, Effect of grain boundary segregation of antimony on relaxation at grain
baoundaries in silicon-iron alloys, J. Rhysique 42, C5-475-480 (1981).

7) Y. Iwasaki and K. Fujimoto, Kinetics of secondary recrystallization in grain oriented silicon steel studied
by high-temperature background, ibid., 42, C5-493-498 (1981).

8) Y. Iwasaki and K. Fujimoto, Intrinsic internal friction in solids measured by torsion pendulums, J. Phys.
D, 15, 1349-1359 (1982).

9) Y. Iwasaki and K. Fujimoto, Comments on drawbacks in the theory of torsion pendulums, J. Phys. E, 15,
412-413 (1982).

10) Y. Iwasaki and K. Hashiguchi, Snoek and Snoek-Koster-like relaxatons in low carbon steel with ferrite-
martensite dual phase steel, Trans. Japan Institute of Metals, 23, 243-249 (1982).

11) Y. Iwasaki, Mathematical Theory of Relaxation in Solids with Discrete Relaxation Spectra, Thesis of
Mathematical Science (Univ. Tokyo, 1996).

12) Y. Iwasaki, Various representations of multi-relaxation in solids with discrete relaxation spectra, Proc.
11th Inter. Conf. Internal Friction and Ultrasonic Attenuation in Solids, Poitiers, J. PhysiqueIV 6, C8-875-878,
(1996).

13) Y. Iwasaki, Application of the theory of electric circuit to the analysis of anelastic relaxation, Bul.
Okayama Univ. Sci., 31A, 27-41 (1996).

14) Y. Iwasaki, Mathematical theory of thermodynamics in multi-relaxation in solids with discrete relaxation

spectra, ibid., 32A, 9-18 (1997).



24 Yoshimitsu Iwasaki

15) Y. Iwasaki, Theory of multi-relaxation in solids with discrete relaxation spectra (1) Thermodynamic
consideration, (2) Differential equation of multi-relaxation, Abstracts of Appl. Math., Annual Meeting of the
Mathematical Society of Japan (Univ. Shinsyu), pp71-74, 75-78 (1997).

16) Y. Iwasaki, Representation of the simplest alternating function in a form of determinant other than
Vandermond's and its application, Proc. 26th Domestic Symposium on Numerical Analysis, pp75-78 (1997).
17) Y. Iwasaki, Axiomatic theory of the multiple relaxation in solids, Reports of the Unified Research
Meeting on Applied Mathematics (Seta Campus, Ryukoku Univ., 1997), pp241-246.

18) Y. Iwasaki, Physico-mathematical consideration of the multi-relaxation in solids, Bul. Okayama Univ.
Sci., 33a, 31-41 (1998).

19) Y. Iwasaki, General theory of multi-relaxation in solids with discrete relaxation spectra, (to be submitted).
20) Y. Iwasaki, Algebra of the diffusion operaor for relaxation in solids: (1) Single diffusion operator, (2)
Product diffusion operator, Abstracts of Appl. Math., Annual Meeting of the Mathematical Society of Japan,
(1998).

21) Y. Iwasaki, Axiomatic theory of the multiple relaxation in solids, Abstracts of International Congress of
Mathematicians '98, Berlin, p235, (1998).

22) Y. Iwasaki, Physico-mathematical interpretation of the multiple anelastic relaxation in solids, Abstracts
of ICIAM '99, Edinburgh, p273 (1999).

23) A.S. Nowick and B.S. Berry, Anelastic Relaxation in Cryatalline Solids, Academic Press, New York,
(1972).

24) Y. Takahashi, Mechanics and Differential Equations, Introduction to Modern Mathematics, Lecture of

Iwanami, Iwanami Pub., Tokyo, 1996.



