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We study the boundary values of the real analytic Eisenstein series on the upper half plane and give an alternative

proof of the functional equation for the Eisenstein series.

Introduction

It is known that a real analytic automorphic form
on a semisimple Lie group is determined by its bound-
ary values, which are distribution valued sections of
principle series representations.

In this paper we consider the real analytic Eisen-
stein series given by

1 i¢(Im z)*
Eoez) = 2 age:z laz + b]2s—t(az + b)¢’
(a.b)=1

where s is a complex parameter, £ € 2Z, and Imz >
0. Since E, ¢(z) is an eigenfunction of the Laplace-
Beltrami operator on a homogeneous line bundle on
the upper half plane, we can consider its boundary
values on the real line. By a result of Oshima [7],
E, ¢(z) is completely determined by its boundary val-
ues, which are distributions on R U {cc0}. The bound-
ary value with respect to the characteristic exponent
s — 1 is a constant multiple of the distribution

1
2 gty t e
(a,b)=1

a>0
where § b and §, denote the Dirac delta function sup-
ported at b/a and oo respectively.

The boundary values of E;(2) are distributions
with period 1 on R. We compute the Fourier series of
the boundary values. As an application, we prove the
well-known functional equation for E, ;(2):

7 °T(8)¢(28)(8)j¢1/2Es,e(2)
=7r_1+3]_-‘(1 —38)¢(2-29)(1 - 8)|[|/2E1—s,l(z)a

where ¢ is the Riemann { function and (a), is the

_shifted factorial.

1 Helgason’s conjecture on the upper half plane

In this section we review on boundary value prob-
lems on the upper half plane following Oshima [7]. We
also refer the reader to Helgason [1] and Schlichtkrull
[10].

Let H be the upper half plane

H={z=z+iye C;y>0}

There is a natural action of
p— —_— a b . — —_—
G=SL(2,R)= {(c d) ; ad — be = 1}
on CU {co} by
_az+b

a b L= 22tD
c d T ez+d

The orbits are H, R U {00}, and the lower half plane.
The isotropy subgroup of 7 (and of —1) is

K =50() = {kg = (°°s" 12;‘;") Y T},

sin
where T = R/2nZ. Thus H ~ G/K.

(1.1)

We define subgroups of G by
o =(v9 0 Y.
A—{ay—(o 15 ;y>00,

1 0
N={nw=(m l);zGR},
N=da,=(! %) .zer

1™ \o 1)°% ’
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Then P is a minimal parabolic subgroup of G and
RU {0} ~ G/P, where P = M AN.

Notice that the coordinate z = z + ¢y corresponds
the Iwasawa decomposition G = NAK by

figQy -1 =T +1y.
We will use
G 2 figayky — (x +1iy,0) e HxT (1.2)

as the coordinate system on G. According to the Iwa-
sawa decomposition G = K AN, we define mappings
k:G— KandH : G — Rbyg € k(9)texp H(g) N
forg € G.

Let B(G) denote the space of the hyperfunctions
on G. The group G acts on B(G) from the left by
f9(z) = f(g~'z) for g, z € G.

For £ € Z define one-dimensional representation
of K by x¢(ks) = e*®. Define the space of the hyper-
function valued section of the homogeneous line bun-
dle on G/ K associated with x,,

B(G/K;xe) = {f € B(G);
f(gk) =xe(k)"'f(9), 9 €G, k€ K}.

Obviously B(G/K;x.) is a G-invariant subspace
of B(@). In terms of the coordinate (1.2), f €
B(G/K; x,) satisfies

f(z,0)e¥°(0) = f(2,0), ze€ H,0€T.

On the other hand, define f(z,6) = h(z)e** for a hy-
perfunction h(z) on H. Then f € B(G/K; x¢). Thus
we can identify B(G/K; x.) with B(H). In this iden-
tifications the action of G is given by

)
we) = (ZE15) a2,

where g and g - z are as in (1.1).
The Casimir operator on G is given by

2 o &
— 42 | = —_ i
0=4y (ax2 + ayz) + 4500

Thus the action of /4 on B(G/K; x;) is given by

62 o2 0
— 2 — — | — iy
Le=y (6:1:2 3y2) wyaz'

Define the Poisson kernel by

e
_ Y g Ti+y
Pa,t(Z)—(x2+y2) (\/z2+y2) . (1.3)

It satisfies

LoP,, = 8(8 - l)P,,g. (1.4)

Let e = +1. We define the representations 7. of
M by T41(ko) = 1 and 7—1(kr) = —1. We define
the space of hyperfunction valued sections of principal
series representation

B(G/P§ Ls,e) = {f € B(G);
flgmayng) = f(g)re(m)y**!, y > 0, z € R},

Let £ € Z with e = (—1)*. For f € B(G/P; L, ) we
define its Poisson transform by

(Pusf)9) = /K flak)xe(k)dk, g€ G,

where dk denote the normalized Haar measure on K.
We can write it as

(Purf)g) = /K F()eH6 D k(g™ k)) dk.
(1.5)

We have

e O™ (k(g™)) = Py o(2),

where g - @ = 2. By (1.5), Ps,¢ can be considered to be
a mapping from

B(K/M,7.) = {f € B(K);
f(km) = 1e(m)f(k), k € K, m € M}

to B(G/K; x¢). For f € B(K/M,1.), Ps,ef depend
holomorphically on s € C.
Let A(G/K; M) denote the space of the func-
tions u € B(G/K; x;) satisfying Lyu = s(s — 1)u.
The following theorem is proved by Oshima [7].
(We will explain the boundary value maps later. )

Theorem 1.1 Let £ € Z and e = (—1)%. If
1 . 1+(=n¢
8¢{2 Js ) J;3=0,1,2,... %,

then the Poisson transform Py, and the boundary
value map B give topological G-isomorphisms of
B(G/P; Ls,c) with A(G/ K ; M,e).

Remark 1.2 We give some historical remarks. For
£ = 0, Helgason proved Theorem 1.1 and conjectured
that it can be generalized to general Riemannian sym-
metric spaces of the noncompact type. Kashiwara et
al. [4] proved Helgason’s conjecture by employing the
techniques of microlocal analysis to study the bound-
ary values of the joint eigenfunctions of invariant dif-
ferential operators. For general ¢, Oshima [7] proved
Theorem 1.1 and Shimeno [12] generalize the result to
Hermitian symmetric spaces.
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We review on the boundary value map following
Kashiwara et al. [4] and Oshima [7].

The Laplace-Beltrami operator L, has regular sin-
gularities along R with the characteristic exponents s
and 1 — 8. Under condition 2s € Z we can define the
boundary value map

ﬂl—a,l : A(G/K;Ms,e) - B(G/P’ Ll—s,e),

Bs,e : A(G/K;Ms) — B(G/P; Ls,e).
We can define B;_; ¢ alone under weaker condition
-2s # 1,2,3,.... Intuitive interpretation of the
boundary values are some “limits” when y | 0. Let
u € A(G/K;M,,) and assume that 2s ¢ Z. If
B1—s,cu and B; gu are both analyticon R ~ NP C
G/ P, then we have an expansion

u(2) = ao(z)y' ~* + ar(z)y*~° + ...
+bo(2)y® + ba(z)y*tt +---

and the boundary values are given by
(Bi—s,0u)(z) = ao(z), (Bs,eu)(z) = bo().
Define the Harish-Chandra c-function,

91-257(24)
D(s+ £I(s - £)

c(s,f) =

Important properties of the boundary value map are the
following:

ﬂl—a,l o Pa,l = c(s, e)id, (1.6)
Ps,l o ﬂl—s,l = C(S, E)ld, (17)
,Bl—s,t o Ps,l = As,e- (1.8)

Here A; . is the Knapp-Stein intertwining operator

(As,ef)(9) = %/oo F(gkrny)dy.

In the realization of the principle series as a function

space on the real line R = NV - 4,

_t [ f)
eh)@ =% [ L0y

Remark 1.3 Schwartz’s distributions constitute a sub-
class of Sato’s hyperfunctions. Oshima [7] gave a char-
acterization of an eigenfunction of L, to be the Pois-
son transform of a distribution (see also Oshima and
Sekiguchi [9]). It follows that boundary values of an
automorphic form are distribution valused sections of
principal series representations.

2 Eisenstein series

DefineI’ = SL(2,Z)and', = T'NP.Lets € C
and £ € Z. Define

Es(9) = E Py 4(79).
’Yeroo\r

2.1)

It is called the real analytic Eisenstein series. We re-
fer the reader to Ibukiyama (ed.) [2], Kubota [5] and
Williams [13] for theories of the Eisenstein series.

If £ is an odd integer, then (2.1) is identically zero
because M C I'. Hereafter we assume ¢ € 2Z. We
can write E; ¢ as

1 ,ilys
Eolz) = 2 abzez laz + b|2s—¢(az + b)¢"

(a,b)=1

2.2)

If Res > 1, then the series converges absolutely and
uniformly on any compact subset of H. As a func-
tion of s, E, 4(2) is analytic for Res > 1. We de-
note its analytic continuation by the same notation. By
(1.4), E; ¢ € A(G/K; M), hence we can consider
its boundary values. Since k. € SL(2,Z) gives the
change of the coordinate z — —1/z and 0 — oo, the
boundary values are determined completely by their re-
striction to R.

The following proposition is given by Oshima and
Sekiguchi [8] for £ = 0.

Proposition 2.1 Assume s — 1/2 ¢ Z and ( € 2Z.
Then

1 b
(Br-s,eBos)@) =c(s,0) 3 6 (a: + ;) :
(a,b)=1
a>0

i€

1 )
(Bs,tEs0)(x) = - e
2 a,bzez |az + b|2s

(a,b)=1

Proof. Notice that the Poisson kernel P, 4 is the Pois-
son transform of the Dirac delta function

P 4(2) = 7(Ps 06)(2).

The factor 7 appears because the invariant measure on
R=N-0is %da:. Let

y= (‘; 3) € SL(2,2).

Assume that a # 0. We have

£, -1
] 1 Pﬁ"/“(z).

_P‘.'_l = =
se (2) laz + b2~L(az + B)E a7 ot
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Thus
Py, = r |28 =Pl eb_s. @.3)
By (1.6),
(BrnaPZy) = ey
It follows from (2.3) that
(Bs,e Py, @) = a |23 55 Bs,0 0 Ps,eb_s (z)
“Ta |2‘ T35 As,tb_ s (2)
y,
= la—z:_—blﬁ @2.4)
Ifa =0, then b = £1 and
P), (2) = i, @.5)

;1 =0on R and
(Bs,ePs,0)(z) = 1.

Thus the formula for the boundary values follows. The
assumption Res > 1 is removed by Theorem 2.3,
where analytic continuation to the complex plane will
be proved. O

y
hence B1—,e P,

Remark 2.2 On R U {00} we have

ﬂl—s,lEs,l = c(s, e)fs
with

1
—2;6% + 7l'6°°,

f s =T Z
(a,b)=1
a>0
where § b and 8, denote the Dirac delta function sup-
ported at b/a and oo respectively.

It is more convenient to consider the following se-
ries (see Williams [13, Section 15.2]):

Bs,g(z) = C(28)Ea,g(z)

_ 1 ity
T2 Z |az + b2¢—¢(az + b)¢’ (2.6

a,beZ
(a.5)#(0,0)

where ( is the Riemann zeta function

0

=3

n=1

Rew > 1.

Now we state the main result of this paper:

Theorem 2.3 Assume s —1/2 ¢ Z and £ € 2Z. Put
By a(z) = 7T (s)C(28) ()2 Eot(2),
where (8)n, denote the shifted factorial defined by
(S)n=8(s+1)---(s+n—-1) n>0,(s)=1.
Then we have

21—2s7r1—sr(2s) B
T 1072) (“23 D+

Z U—zs+1(n)32”m), 2.7

neZ\{0}

(Bi—s,Bs,0)(z) =

where

> &

d>0,d|n

oy(n) =

for a nonzero integer n and v € C. As a function
of 8, P1—s,¢Bs,¢ remains unchanged under substitution
s +— 1 — s and continues to a meromorphic function
on C.

Proof. We claim that

(Br—s,6Bs,e)(x) = me(s, £) (C(2s — 1)

+ Y ooz (n)ef™™),  (2.8)
n€Z\{0}
1T
(Bs,tBs,)(z) = it 3"—(T(3)—)(C(—28 +1)
+ Z 023_1(n)e2””""). 2.9)

n€Z\{0}

Equation (2.8) follows from the proof of Proposi-
tion 2.1 and the Fourier series expansion of the periodic
distribution

i 6(w+%)

b=—o00

oo
=a E : e21r1,a.bz.

b=—00

It follows from the proof of Proposition 2.1,

3¢
(BoBs.)(2) = 1(28) + 3 s

beZ
a>0

Since it is a distribution with period 1, it has a Fourier
series expansion

(Bs,eBs,e)(z) = (2.10)

(<]
§ : cne21rmz.

n=—00
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We have ¢y = i¢((2s), since

1
) IR pyeerrrers
= |az + b]s
a>0
is the derivative of
sgn(az + b)

a(— 2.9 +1) & laz + b1
a>0

in the sense of distributions. For n # 0,

a=1b=—

The b summation above is

—21r\/_m:
Z / |aa: + kl""’
— a—2s /oo €
-0 |V*®

—27v—-1nv
and the sum over k is a or 0 according as a|n or not.
Moreover

a
dv z e21r\/:—lnk/a
k=1

oo e—27r\/:'m’d — 25—} F(-3 + %) 2s—1
———dv=r1 ——Inl* T
T I

By writing n = ab and using the functional equation
for the Riemann zeta function

%1"( s+13)

¢(2s) = 72~ O)

——=((1 - 2s), (2.11)
we have (2.9).

It follows from (2.8) and (2.9) that (2.7) holds and
(Bs,¢Bs,¢)(x) is given by substitutions s — 1 — s in
(2.7). A theorem of Schwartz [11, II Theorem 14] as-
serts that 3, c,e2™"2 gives a distribution if and only
if there exist constant C and a |c,| < C|n|® for for
large |n| (see also Helgason [1, Introduction Lemma
4.21, Lemma 4.23]). Thus the distribution in the large
curl bracket of the right hand side of (2.7) defines a
distribution for all s € C. This completes the proof of
the theorem. O

Remark 2.4 In the proof of Theorem 2.3, we use
the functional equation for the Riemann zeta fuction
(2.11). Notice that (2.11) can be proved by using the
Poisson summation formula (see Mordell [eD.

Equality of the right hand sides of (2.10) and (2.9)
can be obtained formally by the Poisson summation
formula.

Corollary 2.5 As a function of s, E,; con-
tinues to a meromorphic function on C and
T°T'(8)¢(28)(8)(¢/2 Es,e(2) is invariant under s —
1-s.

Proof.  The corollary follows from (1.7), Theorem
1.1, and Theorem 2.3. O

Concluding remarks

1. Oshima and Sekiguchi [9] defined the Eisenstein
series on a semisimple symmetric space of type K,
and proved a functional equation. It may be of interest
to write down explicitly the Eisenstein series and the
functional equation of [9] for SL(2,R)/S0y(1,1).

2. In principle, the method of this article is appli-
cable to discrete subgroups of SL(2,R) other than
SL(2,Z).

3. Professor Yoshihiro Ishikawa informed the author
of the work of Kato [3], where a boundary value of the
theta series and its image under the Poisson transform
are considered.
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