On Obstructions of Anti-Integrallity and Super-Primitiveness

Ken-ichi YOSHIDA and Susumu ODA*
Department of Applied Math.
Okayama University of Science Ridai-cho, Okayama 700-0005, JAPAN
* Matsusaka C. H. School
Toyohara, Matsusaka, Mie 515-0205, JAPAN

(Received November 4, 1999)

Let R be a Noetherian domain and $R[X]$ a polynomial ring. Let α be an element of an algebraic field extension L of the quotient field K of R and let $\pi: R[X] \rightarrow R[\alpha]$ be the R-algebra homomorphism sending X to α. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=d$ and write

$$
\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}
$$

Then $\eta_{i}(1 \leq i \leq d)$ are uniquely determined by α. Let $I_{\eta_{i}}:=R:_{R} \eta_{i}=\{a \in$ $\left.R \mid a \eta_{i} \in R\right\}$ and $I_{[\alpha]}:=\bigcap_{i=1}^{d} I_{\eta_{i}}$. It is easy to see that $I_{[\alpha]}=R[X]:_{R} \varphi_{\alpha}(X)$. We say that α is an anti-integral element over R if $\operatorname{Ker}(\pi)=I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. For $f(X) \in R[X]$, let $C(f(X))$ denote the ideal of R generated by the coefficients of $f(X)$. For an ideal J of $R[X]$, let $C(J)$ denote the ideal generated by the coefficients of the elements in J. If α is an anti-integral element, then $C(\operatorname{Ker}(\pi))=$ $C\left(I_{[\alpha]} \varphi_{\alpha}(X) R[X]\right)=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$. Put $J_{[\alpha]}:=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$. If $J_{[\alpha]} \nsubseteq p$ for all $p \in \mathrm{Dp}_{1}(R):=\left\{p \in \operatorname{Spec}(R) \mid\right.$ depth $\left.R_{p}=1\right\}$, then α is called a superprimitive element over R. It is known that a super-primitive element is an anti-integral element ([OSY,(1.12)]). It is known that any algebraic element over a Krull domain R is anti-integral over R ([OSY,(1.13)]).

Our objective is to investigate when an element $\alpha \in L$ is anti-integral or super-primitive over R.

In this paper, we fix the following notation in addition to the definitions mentioned above unless otherwise specified :

Let R be a Noetherian domain with quotient field K. Let L be an algebraic field extension of K and let α be an element in L which is of degree d over K. Let $\varphi_{\alpha}(X):=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}$ denote the minimal polynomial of α over K (that is, $\eta_{i} \in K$).

Our general reference for unexplained technical terms is [M].

We begin with the following definitions :

Definition 1. For an ideal I, let $\mathcal{R}(I):=I:_{K} I$, which is an over-ring of R.

Definition 2. For $\alpha \in L$, let

$$
R\langle\alpha\rangle:=R[\alpha] \cap R\left[\alpha^{-1}\right]
$$

and

$$
D_{(\alpha)}:=R \oplus I_{[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{[\alpha]} \zeta_{d-1} \quad \text { (as } R \text {-modules) }
$$

where $\zeta_{i}:=\alpha^{i}+\eta_{1} \alpha^{i-1}+\cdots+\eta_{i}$ for $i(1 \leq i \leq d-1)$.
Remark 1. $R\langle\alpha\rangle, \mathcal{R}(R)$ and $D_{(\alpha)}$ are integral over R. (cf. [OSY])
The proof of the following lemma is obtained from the proof of [OKY,Lemma 4] and that of [KY,Theorem 1] without the assumption that α is anti-integral over R.

Lemma 3. Under the same situation as in Definition 2, $D_{(\alpha)}$ is a subring of $R\langle\alpha\rangle$ and they are birational i.e., $D_{(\alpha)}$ and $R\langle\alpha\rangle$ have the same quotient fields $K(\alpha)$.

Proof. When $d=1, D_{(\alpha)}=R$.
Assume that $d=2$. Note $\zeta_{1}=\alpha+\eta_{1}$ and hence $\zeta_{1}^{2}=\zeta_{1}\left(\alpha+\eta_{1}\right)=\alpha \zeta_{1}+\eta_{1} \zeta_{1}=$ $\zeta_{2}-\eta_{2}+\eta_{1} \zeta_{1}=\eta_{1} \zeta_{1}-\eta_{2}\left(\right.$ here $\left.\zeta_{2}=0\right)$.

Assume that $d=3$. Note $\zeta_{1}=\alpha+\eta_{1}, \zeta_{2}=\alpha \zeta_{1}+\eta_{2}$ and $\zeta_{3}=\alpha \zeta_{2}+\eta_{3}$. Thus

$$
\begin{aligned}
& \zeta_{1}^{2}=\zeta_{1}\left(\alpha+\eta_{1}\right)=\alpha \zeta_{1}+\eta_{1} \zeta_{1}=\zeta_{2}-\eta_{2}+\eta_{1} \zeta_{1}, \\
& \zeta_{2} \zeta_{1}=\zeta_{2}\left(\alpha+\eta_{1}\right)=\alpha \zeta_{2}+\zeta_{2} \eta_{1}=\zeta_{3}-\eta_{3}+\eta_{1} \zeta_{2}=-\eta_{3}+\eta_{1} \zeta_{2} \text { and } \\
& \zeta_{2}^{2}=\zeta_{2}\left(\alpha \zeta_{1}+\eta_{2}\right)=\left(\alpha \zeta_{2}\right) \zeta_{1}+\zeta_{2} \eta_{2}=\left(\zeta_{3}-\eta_{3}\right) \zeta_{1}+\zeta_{2} \eta_{2}=-\eta_{3} \zeta_{1}+\eta_{2} \zeta_{2}
\end{aligned}
$$

ause $\zeta_{3}=0$.
Assume that $d \geq 3$. Note first that $\eta_{0}:=1, \zeta_{0}:=1, \zeta_{d}=0$ and $\zeta_{i+1}=$ $\alpha \zeta_{i}+\eta_{i+1}$. Now we compute $\zeta_{i} \zeta_{j}$ as follows :

$$
\begin{aligned}
\zeta_{i} \zeta_{j} & =\zeta_{i}\left(\alpha \zeta_{j-1}+\eta_{j}\right) \\
& =\alpha \zeta_{i} \zeta_{j-1}+\eta_{j} \zeta_{i} \\
& =\left(\zeta_{i+1}-\eta_{i+1}\right) \zeta_{j-1}+\eta_{j} \zeta_{i} \\
& =\zeta_{i+1} \zeta_{j-1}-\eta_{i+1} \zeta_{j-1}+\eta_{j} \zeta_{i} \\
& =\zeta_{i+2} \zeta_{i-2}-\eta_{i+2} \zeta_{j-2}+\eta_{j-1} \zeta_{i+1}-\eta_{i+1} \zeta_{j-1}+\eta_{j} \zeta_{i} \\
& =\zeta_{i+2} \zeta_{i-2}-\left(\eta_{i+2} \zeta_{j-2}+\eta_{i+1} \zeta_{j-1}\right)+\left(\eta_{j} \zeta_{i}+\eta_{j-1} \zeta_{i+1}\right) \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots .
\end{aligned}
$$

(i) Repeat the above process, we have

$$
\zeta_{i} \zeta_{j}=\zeta_{i+j} \zeta_{0}-\sum_{t=1}^{j} \eta_{i+t} \zeta_{j-t}+\sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s}
$$

that is,

$$
\zeta_{i} \zeta_{j}=\zeta_{i+j}-\sum_{t=1}^{j} \eta_{i+t} \zeta_{j-t}+\sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s}
$$

(ii) Put $\ell:=i+j-d$. Then $j \leq i<d$ yields $\ell<d-1$ and $j-\ell \geq 1$. Thus continuing the above process yields

$$
\zeta_{i} \zeta_{j}=\zeta_{d} \zeta_{\ell}-\sum_{t=1}^{j-\ell} \eta_{i+t} \zeta_{j-t}+\sum_{s=0}^{j-\ell-1} \eta_{j-s} \zeta_{i+s}
$$

that is,

$$
\zeta_{i} \zeta_{j}=-\sum_{t=1}^{d-i} \eta_{i+t} \zeta_{j-t}+\sum_{s=0}^{d-i-1} \eta_{j-s} \zeta_{i+s}
$$

Thus we have $I_{[\alpha]} \zeta_{i} I_{[\alpha]} \zeta_{j}=I_{[\alpha]}^{2} \zeta_{i} \zeta_{j} \in D_{(\alpha)}$. Hence for $\beta, \gamma \in D_{(\alpha)}$, we have $\beta+\gamma, \beta \gamma \in D_{(\alpha)}$, which shows that $D_{(\alpha)}$ is a subring of $R[\alpha]$.

Next, it is obvious that $D_{(\alpha)} \subseteq R\langle\alpha\rangle$. Take $\zeta_{1}=\alpha+\eta_{1} \in D_{(\alpha)}$. Then $\alpha=\zeta_{1}-\eta_{1} \in K\left(D_{(\alpha)}\right)$. So we have $K(\alpha)=K\left(D_{(\alpha)}\right) \subseteq K(R\langle\alpha\rangle)=K(\alpha)$.

Definition 4. For $\alpha \in L$, definie :

$$
\operatorname{Ant}(\alpha):=\left\{c \in R \backslash(0) \mid R\langle\alpha\rangle[1 / c]=D_{(\alpha)}[1 / c]\right\} \cup\{0\}
$$

and

$$
\operatorname{Sup}(\alpha):=\left\{c \in R \backslash(0) \mid \mathcal{R}\left(I_{[\alpha]}\right)[1 / c]=R[1 / c]\right\} \cup\{0\}
$$

The set $\operatorname{Ant}(\alpha)$ is called an obstruction of anti-integrality of α over R and the set $\operatorname{Sup}(\alpha)$ is called an obstruction of super-primitiveness of α over R.

Theorem 5. For $\alpha \in L$,
(1) $\operatorname{Ant}(\alpha)$ is an radical ideal of R which contains the ideal $I_{[\alpha]}$;
(2) for $p \in \operatorname{Spec}(R), \operatorname{Ant}(\alpha) \nsubseteq p$ if and only if α is an anti-integral element over R_{p};
(3) the following conditions are equivalent :
(3.i) α is anti-integral over R,
(3.ii) $\operatorname{Ant}(\alpha)=R$,
(3.ii) $\operatorname{Ant}(\alpha) \nsubseteq p$ for all $p \in \operatorname{Spec}(R)$,
(3.iv) $\operatorname{Ant}(\alpha) \nsubseteq p$ for all $p \in \mathrm{D}_{1}(R)$.

Proof. (1) First take $a, b \in \operatorname{Ant}(\alpha)$ and put $c:=a+b$. Take $x \in R\langle\alpha\rangle$. Then $R\langle\alpha\rangle[1 / a]=D_{(\alpha)}[1 / a]$ and $R\langle\alpha\rangle[1 / b]=D_{(\alpha)}[1 / b]$. So there exists $n \in \mathbf{N}$ such that $a^{n} x \in D_{(\alpha)}$ and $b^{n} x \in D_{(\alpha)}$. Thus we have $c^{2 n} x=(a+b)^{2 n}=$ $\sum_{i+j=2 n} a^{i} b^{j} x=\sum_{i+j=2 n, i \geq n} a^{i} b^{j} x+\sum_{i+j=2 n, j \geq n} a^{i} b^{j} x \in D_{(\alpha)}+D_{(\alpha)}=D_{(\alpha)}$, which implies that $c^{2 n} x \in D_{(\alpha)}$ and hence $x \in D_{(\alpha)}[1 / c]$. Therefore $\operatorname{Ant}(\alpha)$ is an ideal of R. Secondly, since $R\langle\alpha\rangle[1 / e]=R\langle\alpha\rangle\left[1 / e^{n}\right]$ and $D_{(\alpha)}[1 / e]=D_{(\alpha)}\left[1 / e^{n}\right]$ for every $n \in \mathbf{N}$. So $\operatorname{Ant}(\alpha)$ is a radical ideal. Thirdly, take a non-zero $a \in I_{[\alpha]}$. Then $I_{[\alpha]}[1 / a]=R[1 / a]$. Hence $\varphi_{\alpha}(X) \in R[1 / a][X]$, that is, $\eta_{i} \in R[1 / a]$ for all $i \quad(1 \leq i \leq d)$. Since $\operatorname{deg}\left(\varphi_{\alpha}(X)\right)=d, \alpha$ is integral over $R[1 / a]$. Thus $\alpha \in R[1 / a]\left[\eta_{1}, \ldots, \eta_{d-1}\right]=D_{(\alpha)}[1 / a]$. So we have $R\langle\alpha\rangle[1 / a] \subseteq R[\alpha][1 / a] \subseteq$ $D_{(\alpha)}[1 / a] \subseteq R\langle\alpha\rangle[1 / a]$ and hence $R\langle\alpha\rangle[1 / a]=D_{(\alpha)}[1 / a]$, which shows that $a \in \operatorname{Ant}(\alpha)$. Therefore we have $I_{[\alpha]} \subseteq \operatorname{Ant}(\alpha)$.
(2) Let $p \in \operatorname{Spec}(R)$. Assume that $\operatorname{Ant}(\alpha) \nsubseteq p$. Then there exists $a \in \operatorname{Ant}(\alpha) \backslash p$ such that $R\langle\alpha\rangle[1 / a]=D_{(\alpha)}[1 / a]$. Then $R\langle\alpha\rangle_{p}=\left(D_{(\alpha)}\right)_{p}$. Take $f(X) \in \operatorname{Ker}(\pi)$. with $n:=\operatorname{deg}(f(X))(\geq d)$. Put $f(X):=a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \in R[X]$. Then $a_{0} \alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}=0$ and hence $a_{0} \alpha^{d-1}+a_{1} \alpha^{d-2}+\cdots+a_{d-1}=$ $-\left(a_{d}(1 / \alpha)+\cdots+a_{n}(1 / \alpha)^{n-d}\right) \in R\langle\alpha\rangle_{p}=R_{p}\langle\alpha\rangle=\left(D_{(\alpha)}\right)_{p}=R_{p} \oplus\left(I_{[\alpha]}\right)_{p} \zeta_{1} \oplus \cdots \oplus$ $\left(I_{[\alpha]}\right)_{p} \zeta_{d-1}$. Thus we have $a_{0} \in\left(I_{[\alpha]}\right)_{p}$. Consider $f_{2}(X):=f(X)-a_{0} \varphi_{\alpha}(X) X^{n-d}$. Then $\operatorname{deg}\left(f_{2}(X)\right) \leq n-1$ and $f_{2}(X) \in \operatorname{Ker}(\pi)$. By induction on n, we have $(\operatorname{Ker}(\pi))_{p} \subseteq I_{[\alpha]} \varphi_{\alpha}(X) R_{p}[X]$. Hence $\operatorname{Ker}(\pi)_{p}=I_{[\alpha]} \varphi_{\alpha}(X) R_{p}[X]$, which shows that α is anti-integral over R_{p}. Conversely, assume that α is anti-integral over R_{p}. Then $R_{p}\langle\alpha\rangle=\left(D_{(\alpha)}\right)_{p}$ by [KY,Theorem 1]. Since $\left(D_{(\alpha)}\right)_{p}$ is a finitely generated R_{p}-module, so is $R_{p}\langle\alpha\rangle$. Thus there exists $a \in R \backslash(0)$ such that $R\langle\alpha\rangle[1 / a]=D_{(\alpha)}[1 / a]$.
(3) (3.i) \Leftrightarrow (3.ii) : Since α is anti-integral over R_{p} for every $p \in \operatorname{Spec}(R)$, we have $\operatorname{Ant}(\alpha)_{p}=R_{p}$ by (2). Thus $\operatorname{Ant}(\alpha)=R$. The converse implication is obvious. (3.iii) \Leftrightarrow (3.ii) is obvious. (3.iv) \Leftrightarrow (3.ii) follows from [SOY,Theorem 2]. Q.E.D.

The result (3) of Theorem 5 yields the following corollary, which is seen in [KY].

Corollary 5.1. An element $\alpha \in L$ is anti-integral over R if and only if $R\langle\alpha\rangle=R \oplus I_{[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{[\alpha]} \zeta_{d-1}\left(=D_{(\alpha)}\right)$.

Remark 2. If R is normal then $R\langle\alpha\rangle=R \oplus I_{[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{[\alpha]} \zeta_{d-1}\left(=D_{(\alpha)}\right)$. (cf. [OSY,(1.13)])

Theorem 6. For $\alpha \in L$,
(1) $\operatorname{Sup}(\alpha)$ is an radical ideal of R which contains the ideal $I_{[\alpha]}$;
(2) for $p \in \operatorname{Spec}(R), \operatorname{Sup}(\alpha) \nsubseteq p$ if and only if α is a super-primitive element over R_{p};
(3) The following conditions are equivalent :
(3.i) α is super-primitive over R,
(3.ii) $\operatorname{Sup}(\alpha)=R$,
(3.iii) $\operatorname{Sup}(\alpha) \nsubseteq p$ for all $p \in \operatorname{Spec}(R)$,
(3.iv) $\operatorname{Sup}(\alpha) \nsubseteq p$ for all $p \in \mathrm{D}_{1}(R)$.

Proof. (1) Take $a \in I_{[\alpha]}$. Then $\mathcal{R}\left(I_{[\alpha]}\right)[1 / a]=\mathcal{R}\left(I_{[\alpha]}[1 / a]\right)=R[1 / a]$. So $a \in \operatorname{Sup}(\alpha)$ and hence $I_{[\alpha]} \subseteq \operatorname{Sup}(\alpha)$. In the same manners as in the proof of Theorem 5(1), we can show that $I_{[\alpha]}$ is a radical ideal of R.
(2) By using [OSY,Theorem 2.11] instead of [KY,Theorem 1], our conclusion is obtained in the same manners as in Theorem 5(2).
(3) The equivalences (3.i) \Leftrightarrow (3.ii) \Leftrightarrow (3.iii) follow from the same argument as in Theorem 5(3), and the equivalence (3.i) \Leftrightarrow (3.iv) follows from [OSY, Theorem 1.12].

From Theorems 5 and 6 , we have the following result.
Theorem 7. Let $\alpha \in L$. Then

$$
\operatorname{Ass}_{R}(R / \operatorname{Ant}(\alpha)) \subseteq \mathrm{Dp}_{1}(R)
$$

and

$$
\operatorname{Ass}_{R}(R / \operatorname{Sup}(\alpha)) \subseteq \mathrm{Dp}_{1}(R)
$$

Remark 3. $\operatorname{Sup}(\alpha) \subseteq \operatorname{Ant}(\alpha)$. In fact, if α is super-primitive over R then α is anti-integral over R by [OSY,(1.12)].

Put $I_{n}:=\{a \in R \mid a \in R$ is the leading coefficient of some polynomial $f(X) \in \operatorname{Ker}(\pi)$ of degree $n\}$. Note that $\operatorname{Ker}(\pi)$ contains no polynomial of degree less than $d=[K(\alpha): K]$. If $f(X) \in \operatorname{Ker}(\pi)$, then $X f(X) \in \operatorname{Ker}(\pi)$ and $\operatorname{deg}(X f(X))=\operatorname{deg}(f(X))+1$. Hence we have an ascending chain :

$$
I_{d} \subseteq I_{d+1} \subseteq \ldots \subseteq I_{n} \subseteq \ldots
$$

Since R is a Noetherian doamin, the above chain stops, that is, $I_{n}=I_{n+1}=\cdots$ for some large n. Put $I_{\infty}:=I_{n}$.

Proposition 8. Under the above notation,
(1) $I_{d}=I_{[\alpha]}$;
(2) for $p \in \operatorname{Spec}(R), \alpha$ is anti-integral over R_{p} if and only if $p \nsupseteq I_{d}:_{R} I_{\infty}$.

Proof. (1) Take $a \in I_{[\alpha]}$. Then there exists a polynomial $f(X)=a X^{d}+$ $a_{1} X^{d-1}+\cdots+a_{d} \in \operatorname{Ker}(\pi)$. Since $F(\alpha)=0$ and $\operatorname{deg}(f(X))=d$, we have $f(X)=a \varphi_{\alpha}(X) \in R[X]$. Thus $a \in I_{[\alpha]}$. Conversely, let $a \varphi_{\alpha}(X) \in R[X]$. Then $a \in I_{d}$ and hence $I_{[\alpha]} \subseteq I_{d}$. Therefore we have $I_{d}=I_{[\alpha]}$.
(2) (\Rightarrow) : Assume that $a \in L$ is anti-integral over R_{p}. Then the kernel of $\pi_{p}:=\pi \otimes_{R} R_{p}: R_{p}[X] \rightarrow R_{p}[\alpha]$ is generated by some polynomials of degree $d:=[K(\alpha] K]$. Hence $\left(I_{[\alpha]}\right)_{p}=(I \infty)_{p}$. Thus $p \nsupseteq I_{d}:_{R} I_{\infty}$.
(\Leftarrow) : Assume that $I_{d}:_{R} I_{\infty} \nsubseteq p$ with $p \in \operatorname{Spec}(R)$. Since $\left(I_{d}\right)_{p}=\left(I_{\infty}\right)_{p}$, $\operatorname{Ker}\left(\pi_{p}\right)$ is generated by some polynomial of degree d. So α is anti-integral over R_{p}. [Indeed, if $\left(f_{1}(X), \ldots, f_{n}(X)\right) R_{p}[X]=\operatorname{Ker}\left(\pi_{p}\right)$ with $\operatorname{deg}\left(f_{i}(X)\right)=d$ for all i, then $f_{i}(X)=a_{i} \varphi_{i}(X)$ with $a_{i} \in R$, where $\varphi_{i}(X)$ denotes the monic polynomial in $K[X]$. Since $\operatorname{deg}\left(\varphi_{i}(X)\right)=d$ and $\varphi_{i}(\alpha)=0, \varphi_{1}(X)=\cdots=\varphi_{n}(X)$. Thus $\operatorname{Ker}\left(\pi_{p}\right)=\left(a_{1}, \ldots, a_{n}\right) \varphi_{1}(X) R_{p}[X]$. So we have $\left.\left(a_{1}, \ldots, a_{n}\right) R_{p}=I_{[\alpha]} R_{p}.\right]$

Combining Theorem 5 and Proposition 8, we have the following result.
Corollary 8.1. $\operatorname{Ant}(\alpha)=\sqrt{I_{d}:_{R} I_{\infty}}$.

References

[KY] K.Kanemitsu and K.Yoshida : Some properties of extensions $R[\alpha] \cap R\left[\alpha^{-1}\right]$ over Noetherian domains R, Comm. Alg., 23(12) (1995).4501-4507.
[M] H.Matsumura : Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
[OKY] S.Oda, M.Kanemitsu ans K.Yoshida : On rings of certain type associated with simple ring-extensions, to appear in Math. J. Okayama Univ.
[OY] S.Oda and K.Yoshida : Anti-integral extensions of Noetherian domains, Kobe J. Math. 5(1988),43-56.
[OSY] S.Oda, J.Sato and K.Yoshida : High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30(1993),119-135.
[SOY] J.Sato, S.Oda and K.Yoshida : A characteriztion of anti-integral extensions, Math. J. Okayama Univ., 37 (1995),55-57.

