On Obstructions of Anti-Integrallity and Super-Primitiveness

Ken-ichi YOSHIDA and Susumu ODA* Department of Applied Math. Okayama University of Science Ridai-cho, Okayama 700-0005, JAPAN * Matsusaka C. H. School Toyohara, Matsusaka, Mie 515-0205, JAPAN (Received November 4, 1999)

Let R be a Noetherian domain and R[X] a polynomial ring. Let α be an element of an algebraic field extension L of the quotient field K of R and let $\pi: R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$

$$\varphi_{\alpha}(X) = X^{d} + \eta_1 X^{d-1} + \dots + \eta_d$$

be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write

Then η_i $(1 \leq i \leq d)$ are uniquely determined by α . Let $I_{\eta_i} := R :_R \eta_i = \{a \in R \mid a\eta_i \in R\}$ and $I_{[\alpha]} := \bigcap_{i=1}^d I_{\eta_i}$. It is easy to see that $I_{[\alpha]} = R[X] :_R \varphi_\alpha(X)$. We say that α is an *anti-integral element* over R if $\operatorname{Ker}(\pi) = I_{[\alpha]}\varphi_\alpha(X)R[X]$. For $f(X) \in R[X]$, let C(f(X)) denote the ideal of R generated by the coefficients of f(X). For an ideal J of R[X], let C(J) denote the ideal generated by the coefficients of ficients of the elements in J. If α is an anti-integral element, then $C(\operatorname{Ker}(\pi)) = C(I_{[\alpha]}\varphi_\alpha(X)R[X]) = I_{[\alpha]}(1,\eta_1,\ldots,\eta_d)$. Put $J_{[\alpha]} := I_{[\alpha]}(1,\eta_1,\ldots,\eta_d)$. If $J_{[\alpha]} \not\subseteq p$ for all $p \in \operatorname{Dp}_1(R) := \{p \in \operatorname{Spec}(R) \mid \operatorname{depth} R_p = 1\}$, then α is called a superprimitive element over R. It is known that a super-primitive element is an anti-integral element ([OSY,(1.12)]). It is known that any algebraic element over a Krull domain R is anti-integral over R ([OSY,(1.13)]).

Our objective is to investigate when an element $\alpha \in L$ is anti-integral or super-primitive over R.

In this paper, we fix the following notation in addition to the definitions mentioned above unless otherwise specified : Let R be a Noetherian domain with quotient field K. Let L be an algebraic field extension of K and let α be an element in L which is of degree d over K. Let $\varphi_{\alpha}(X) := X^d + \eta_1 X^{d-1} + \cdots + \eta_d$ denote the minimal polynomial of α over K (that is, $\eta_i \in K$).

Our general reference for unexplained technical terms is [M].

We begin with the following definitions :

Definition 1. For an ideal I, let $\mathcal{R}(I) := I :_K I$, which is an over-ring of R.

Definition 2. For $\alpha \in L$, let

$$R\langle \alpha \rangle := R[\alpha] \cap R[\alpha^{-1}]$$

and

$$D_{(lpha)}:=R\oplus I_{[lpha]}\zeta_1\oplus\cdots\oplus I_{[lpha]}\zeta_{d-1} \qquad (ext{as R-modules}),$$

where $\zeta_i := \alpha^i + \eta_1 \alpha^{i-1} + \cdots + \eta_i$ for $i \ (1 \le i \le d-1)$.

Remark 1. $R(\alpha)$, $\mathcal{R}(R)$ and $D_{(\alpha)}$ are integral over R. (cf. [OSY])

The proof of the following lemma is obtained from the proof of [OKY,Lemma 4] and that of [KY,Theorem 1] without the assumption that α is anti-integral over R.

Lemma 3. Under the same situation as in Definition 2, $D_{(\alpha)}$ is a subring of $R\langle \alpha \rangle$ and they are birational i.e., $D_{(\alpha)}$ and $R\langle \alpha \rangle$ have the same quotient fields $K(\alpha)$.

Proof. When d = 1, $D_{(\alpha)} = R$. Assume that d = 2. Note $\zeta_1 = \alpha + \eta_1$ and hence $\zeta_1^2 = \zeta_1(\alpha + \eta_1) = \alpha\zeta_1 + \eta_1\zeta_1 = \zeta_2 - \eta_2 + \eta_1\zeta_1 = \eta_1\zeta_1 - \eta_2$ (here $\zeta_2 = 0$). Assume that d = 3. Note $\zeta_1 = \alpha + \eta_1$, $\zeta_2 = \alpha\zeta_1 + \eta_2$ and $\zeta_3 = \alpha\zeta_2 + \eta_3$. Thus $\zeta_1^2 = \zeta_1(\alpha + \eta_1) = \alpha\zeta_1 + \eta_1\zeta_1 = \zeta_2 - \eta_2 + \eta_1\zeta_1$, $\zeta_2\zeta_1 = \zeta_2(\alpha + \eta_1) = \alpha\zeta_2 + \zeta_2\eta_1 = \zeta_3 - \eta_3 + \eta_1\zeta_2 = -\eta_3 + \eta_1\zeta_2$ and $\zeta_2^2 = \zeta_2(\alpha\zeta_1 + \eta_2) = (\alpha\zeta_2)\zeta_1 + \zeta_2\eta_2 = (\zeta_3 - \eta_3)\zeta_1 + \zeta_2\eta_2 = -\eta_3\zeta_1 + \eta_2\zeta_2$ ause $\zeta_3 = 0$.

Assume that $d \ge 3$. Note first that $\eta_0 := 1$, $\zeta_0 := 1$, $\zeta_d = 0$ and $\zeta_{i+1} = \alpha \zeta_i + \eta_{i+1}$. Now we compute $\zeta_i \zeta_j$ as follows :

On Obstructions of Anti-Integrallity and Super-Primitiveness

$$\begin{aligned} \zeta_{i}\zeta_{j} &= \zeta_{i}(\alpha\zeta_{j-1} + \eta_{j}) \\ &= \alpha\zeta_{i}\zeta_{j-1} + \eta_{j}\zeta_{i} \\ &= (\zeta_{i+1} - \eta_{i+1})\zeta_{j-1} + \eta_{j}\zeta_{i} \\ &= \zeta_{i+1}\zeta_{j-1} - \eta_{i+1}\zeta_{j-1} + \eta_{j}\zeta_{i} \\ &= \zeta_{i+2}\zeta_{i-2} - \eta_{i+2}\zeta_{j-2} + \eta_{j-1}\zeta_{i+1} - \eta_{i+1}\zeta_{j-1} + \eta_{j}\zeta_{i} \\ &= \zeta_{i+2}\zeta_{i-2} - (\eta_{i+2}\zeta_{j-2} + \eta_{i+1}\zeta_{j-1}) + (\eta_{j}\zeta_{i} + \eta_{j-1}\zeta_{i+1}) \\ &\cdots \\ &\cdots \\ &\cdots \\ &\cdots \\ \end{aligned}$$

(i) Repeat the above process, we have

$$\zeta_i \zeta_j = \zeta_{i+j} \zeta_0 - \sum_{t=1}^j \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s},$$

that is,

$$\zeta_i \zeta_j = \zeta_{i+j} - \sum_{t=1}^j \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s}.$$

(ii) Put $\ell := i + j - d$. Then $j \leq i < d$ yields $\ell < d - 1$ and $j - \ell \geq 1$. Thus continuing the above process yields

$$\zeta_i \zeta_j = \zeta_d \zeta_\ell - \sum_{t=1}^{j-\ell} \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{j-\ell-1} \eta_{j-s} \zeta_{i+s},$$

that is,

$$\zeta_i \zeta_j = -\sum_{t=1}^{d-i} \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{d-i-1} \eta_{j-s} \zeta_{i+s}.$$

Thus we have $I_{[\alpha]}\zeta_i I_{[\alpha]}\zeta_j = I_{[\alpha]}^2\zeta_i\zeta_j \in D_{(\alpha)}$. Hence for $\beta, \gamma \in D_{(\alpha)}$, we have $\beta + \gamma, \beta\gamma \in D_{(\alpha)}$, which shows that $D_{(\alpha)}$ is a subring of $R[\alpha]$.

Next, it is obvious that $D_{(\alpha)} \subseteq R\langle \alpha \rangle$. Take $\zeta_1 = \alpha + \eta_1 \in D_{(\alpha)}$. Then $\alpha = \zeta_1 - \eta_1 \in K(D_{(\alpha)})$. So we have $K(\alpha) = K(D_{(\alpha)}) \subseteq K(R\langle \alpha \rangle) = K(\alpha)$.

Definition 4. For $\alpha \in L$, definie :

$$\operatorname{Ant}(lpha) := \{ \ c \in R \setminus (0) \mid R \langle lpha
angle [1/c] = D_{(lpha)} [1/c] \ \} \cup \{0\}$$

and

$$\operatorname{Sup}(\alpha) := \{ c \in R \setminus (0) \mid \mathcal{R}(I_{[\alpha]})[1/c] = R[1/c] \} \cup \{0\}.$$

The set $Ant(\alpha)$ is called an obstruction of anti-integrality of α over R and the set $Sup(\alpha)$ is called an obstruction of super-primitiveness of α over R.

Theorem 5. For $\alpha \in L$,

(1) Ant(α) is an radical ideal of R which contains the ideal I_{α} ;

(2) for $p \in \operatorname{Spec}(R)$, $\operatorname{Ant}(\alpha) \not\subseteq p$ if and only if α is an anti-integral element over R_p ;

(3) the following conditions are equivalent :

- (3.i) α is anti-integral over R,
- (3.ii) $\operatorname{Ant}(\alpha) = R$,
- (3.iii) Ant(α) $\not\subseteq p$ for all $p \in \operatorname{Spec}(R)$,
- (3.iv) Ant(α) $\not\subseteq p$ for all $p \in Dp_1(R)$.

Proof. (1) First take $a, b \in \operatorname{Ant}(\alpha)$ and put c := a + b. Take $x \in R\langle \alpha \rangle$. Then $R\langle \alpha \rangle [1/a] = D_{(\alpha)}[1/a]$ and $R\langle \alpha \rangle [1/b] = D_{(\alpha)}[1/b]$. So there exists $n \in \mathbb{N}$ such that $a^n x \in D_{(\alpha)}$ and $b^n x \in D_{(\alpha)}$. Thus we have $c^{2n} x = (a + b)^{2n} = \sum_{i+j=2n} a^i b^j x = \sum_{i+j=2n,i\geq n} a^i b^j x + \sum_{i+j=2n,j\geq n} a^i b^j x \in D_{(\alpha)} + D_{(\alpha)} = D_{(\alpha)}$, which implies that $c^{2n} x \in D_{(\alpha)}$ and hence $x \in D_{(\alpha)}[1/c]$. Therefore $\operatorname{Ant}(\alpha)$ is an ideal of R. Secondly, since $R\langle \alpha \rangle [1/e] = R\langle \alpha \rangle [1/e^n]$ and $D_{(\alpha)}[1/e] = D_{(\alpha)}[1/e^n]$ for every $n \in \mathbb{N}$. So $\operatorname{Ant}(\alpha)$ is a radical ideal. Thirdly, take a non-zero $a \in I_{[\alpha]}$. Then $I_{[\alpha]}[1/a] = R[1/a]$. Hence $\varphi_{\alpha}(X) \in R[1/a][X]$, that is, $\eta_i \in R[1/a]$ for all i $(1 \leq i \leq d)$. Since $\operatorname{deg}(\varphi_{\alpha}(X)) = d$, α is integral over R[1/a]. Thus $\alpha \in R[1/a][\eta_1, \ldots, \eta_{d-1}] = D_{(\alpha)}[1/a]$. So we have $R\langle \alpha \rangle [1/a] \subseteq R[\alpha][1/a] \subseteq D_{(\alpha)}[1/a]$ and hence $R\langle \alpha \rangle [1/a] = D_{(\alpha)}[1/a]$, which shows that $a \in \operatorname{Ant}(\alpha)$. Therefore we have $I_{[\alpha]} \subseteq \operatorname{Ant}(\alpha)$.

(2) Let $p \in \operatorname{Spec}(R)$. Assume that $\operatorname{Ant}(\alpha) \not\subseteq p$. Then there exists $a \in \operatorname{Ant}(\alpha) \setminus p$ such that $R\langle \alpha \rangle [1/a] = D_{(\alpha)}[1/a]$. Then $R\langle \alpha \rangle_p = (D_{(\alpha)})_p$. Take $f(X) \in \operatorname{Ker}(\pi)$. with $n := \operatorname{deg}(f(X))(\geq d)$. Put $f(X) := a_0 X^n + a_1 X^{n-1} + \cdots + a_n \in R[X]$. Then $a_0 \alpha^n + a_1 \alpha^{n-1} + \cdots + a_n = 0$ and hence $a_0 \alpha^{d-1} + a_1 \alpha^{d-2} + \cdots + a_{d-1} = -(a_d(1/\alpha) + \cdots + a_n(1/\alpha)^{n-d}) \in R\langle \alpha \rangle_p = R_p\langle \alpha \rangle = (D_{(\alpha)})_p = R_p \oplus (I_{[\alpha]})_p \zeta_1 \oplus \cdots \oplus (I_{[\alpha]})_p \zeta_{d-1}$. Thus we have $a_0 \in (I_{[\alpha]})_p$. Consider $f_2(X) := f(X) - a_0 \varphi_\alpha(X) X^{n-d}$. Then $\operatorname{deg}(f_2(X)) \leq n - 1$ and $f_2(X) \in \operatorname{Ker}(\pi)$. By induction on n, we have $(\operatorname{Ker}(\pi))_p \subseteq I_{[\alpha]} \varphi_\alpha(X) R_p[X]$. Hence $\operatorname{Ker}(\pi)_p = I_{[\alpha]} \varphi_\alpha(X) R_p[X]$, which shows that α is anti-integral over R_p . Conversely, assume that α is anti-integral over R_p . Then $R_p\langle \alpha \rangle = (D_{(\alpha)})_p$ by [KY, Theorem 1]. Since $(D_{(\alpha)})_p$ is a finitely generated R_p -module, so is $R_p\langle \alpha \rangle$. Thus there exists $a \in R \setminus (0)$ such that $R\langle \alpha \rangle[1/a] = D_{(\alpha)}[1/a]$.

(3) (3.i) \Leftrightarrow (3.ii) : Since α is anti-integral over R_p for every $p \in \operatorname{Spec}(R)$, we have $\operatorname{Ant}(\alpha)_p = R_p$ by (2). Thus $\operatorname{Ant}(\alpha) = R$. The converse implication is obvious. (3.iii) \Leftrightarrow (3.ii) is obvious. (3.iv) \Leftrightarrow (3.ii) follows from [SOY, Theorem 2]. Q.E.D.

The result (3) of Theorem 5 yields the following corollary, which is seen in [KY].

Corollary 5.1. An element $\alpha \in L$ is anti-integral over R if and only if $R\langle \alpha \rangle = R \oplus I_{[\alpha]}\zeta_1 \oplus \cdots \oplus I_{[\alpha]}\zeta_{d-1} (= D_{(\alpha)}).$

Remark 2. If R is normal then $R\langle \alpha \rangle = R \oplus I_{[\alpha]}\zeta_1 \oplus \cdots \oplus I_{[\alpha]}\zeta_{d-1} (= D_{(\alpha)}).$ (cf. [OSY,(1.13)])

Theorem 6. For $\alpha \in L$,

(1) $\operatorname{Sup}(\alpha)$ is an radical ideal of R which contains the ideal $I_{[\alpha]}$;

(2) for $p \in \operatorname{Spec}(R)$, $\operatorname{Sup}(\alpha) \not\subseteq p$ if and only if α is a super-primitive element over R_p ;

(3) The following conditions are equivalent :

- (3.i) α is super-primitive over R,
- (3.ii) $\operatorname{Sup}(\alpha) = R$,

(3.iii) $\operatorname{Sup}(\alpha) \not\subseteq p$ for all $p \in \operatorname{Spec}(R)$,

(3.iv) $\operatorname{Sup}(\alpha) \not\subseteq p$ for all $p \in \operatorname{Dp}_1(R)$.

Proof. (1) Take $a \in I_{[\alpha]}$. Then $\mathcal{R}(I_{[\alpha]})[1/a] = \mathcal{R}(I_{[\alpha]}[1/a]) = R[1/a]$. So $a \in \operatorname{Sup}(\alpha)$ and hence $I_{[\alpha]} \subseteq \operatorname{Sup}(\alpha)$. In the same manners as in the proof of Theorem 5(1), we can show that $I_{[\alpha]}$ is a radical ideal of R.

(2) By using [OSY, Theorem 2.11] instead of [KY, Theorem 1], our conclusion is obtained in the same manners as in Theorem 5(2).

(3) The equivalences $(3.i) \Leftrightarrow (3.ii) \Leftrightarrow (3.iii)$ follow from the same argument as in Theorem 5(3), and the equivalence $(3.i) \Leftrightarrow (3.iv)$ follows from [OSY, Theorem 1.12].

From Theorems 5 and 6, we have the following result.

Theorem 7. Let $\alpha \in L$. Then

$$\operatorname{Ass}_R(R/\operatorname{Ant}(\alpha)) \subseteq \operatorname{Dp}_1(R)$$

and

$$\operatorname{Ass}_R(R/\operatorname{Sup}(\alpha)) \subseteq \operatorname{Dp}_1(R).$$

Remark 3. $\operatorname{Sup}(\alpha) \subseteq \operatorname{Ant}(\alpha)$. In fact, if α is super-primitive over R then α is anti-integral over R by [OSY,(1.12)].

Put $I_n := \{ a \in R \mid a \in R \text{ is the leading coefficient of some polynomial } f(X) \in \operatorname{Ker}(\pi) \text{ of degree } n \}$. Note that $\operatorname{Ker}(\pi)$ contains no polynomial of degree less than $d = [K(\alpha) : K]$. If $f(X) \in \operatorname{Ker}(\pi)$, then $Xf(X) \in \operatorname{Ker}(\pi)$ and $\operatorname{deg}(Xf(X)) = \operatorname{deg}(f(X)) + 1$. Hence we have an ascending chain :

$$I_d \subseteq I_{d+1} \subseteq \ldots \subseteq I_n \subseteq \ldots$$

Since R is a Noetherian doamin, the above chain stops, that is, $I_n = I_{n+1} = \cdots$ for some large n. Put $I_{\infty} := I_n$.

Proposition 8. Under the above notation, (1) $I_d = I_{[\alpha]}$; (2) for $p \in \operatorname{Spec}(R)$, α is anti-integral over R_p if and only if $p \not\supseteq I_d :_R I_{\infty}$.

Proof. (1) Take $a \in I_{[\alpha]}$. Then there exists a polynomial $f(X) = aX^d + a_1X^{d-1} + \cdots + a_d \in \operatorname{Ker}(\pi)$. Since $F(\alpha) = 0$ and $\operatorname{deg}(f(X)) = d$, we have $f(X) = a\varphi_{\alpha}(X) \in R[X]$. Thus $a \in I_{[\alpha]}$. Conversely, let $a\varphi_{\alpha}(X) \in R[X]$. Then $a \in I_d$ and hence $I_{[\alpha]} \subseteq I_d$. Therefore we have $I_d = I_{[\alpha]}$.

(2) (\Rightarrow) : Assume that $a \in L$ is anti-integral over R_p . Then the kernel of $\pi_p := \pi \otimes_R R_p : R_p[X] \to R_p[\alpha]$ is generated by some polynomials of degree $d := [K(\alpha] K]$. Hence $(I_{[\alpha]})_p = (I\infty)_p$. Thus $p \not\supseteq I_d :_R I_\infty$.

(\Leftarrow): Assume that $I_d :_R I_\infty \not\subseteq p$ with $p \in \operatorname{Spec}(R)$. Since $(I_d)_p = (I_\infty)_p$, Ker (π_p) is generated by some polynomial of degree d. So α is anti-integral over R_p . [Indeed, if $(f_1(X), \ldots, f_n(X))R_p[X] = \operatorname{Ker}(\pi_p)$ with $\operatorname{deg}(f_i(X)) = d$ for all i, then $f_i(X) = a_i\varphi_i(X)$ with $a_i \in R$, where $\varphi_i(X)$ denotes the monic polynomial in K[X]. Since $\operatorname{deg}(\varphi_i(X)) = d$ and $\varphi_i(\alpha) = 0$, $\varphi_1(X) = \cdots = \varphi_n(X)$. Thus $\operatorname{Ker}(\pi_p) = (a_1, \ldots, a_n)\varphi_1(X)R_p[X]$. So we have $(a_1, \ldots, a_n)R_p = I_{[\alpha]}R_p$.]

Combining Theorem 5 and Proposition 8, we have the following result.

Corollary 8.1. Ant $(\alpha) = \sqrt{I_d :_R I_\infty}$.

References

[KY] K.Kanemitsu and K.Yoshida : Some properties of extensions $R[\alpha] \cap R[\alpha^{-1}]$ over Noetherian domains R, Comm. Alg., 23(12) (1995).4501-4507.

- [M] H.Matsumura : Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
- [OKY] S.Oda, M.Kanemitsu ans K.Yoshida : On rings of certain type associated with simple ring-extensions, to appear in Math. J. Okayama Univ.
- [OY] S.Oda and K.Yoshida : Anti-integral extensions of Noetherian domains, Kobe J. Math. 5(1988),43-56.
- [OSY] S.Oda, J.Sato and K.Yoshida : High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30(1993),119-135.
- [SOY] J.Sato, S.Oda and K.Yoshida : A characteriztion of anti-integral extensions, Math. J. Okayama Univ., 37 (1995),55-57.