# Poisson transforms for some principal series representations of $\operatorname{Sp}(n, \mathbb{R})$ 

Nobukazu Shimeno<br>Department of Applied Mathematics, Faculty of Science, Okayama University of Science, Ridaicho 1-1, Okayama 700-0005, Japan

(Received October 5, 1998)

## 1 Introduction

Let $G=\operatorname{Sp}(n, \mathbb{R})(n \geq 2)$, $K$ a maximal compact subgroup of $G$, and let $P_{\theta}$ be a parabolic subgroup of $G$ with a Langlands decomposition $P_{\theta}=M_{\Theta} A_{\theta} N_{\Theta}^{+}$, where $M_{\Theta} \simeq$ $\{ \pm 1\} \times S p(n-1, \mathbb{R})$. We consider an induced representation of $G$ from $P_{\theta}$, which is induced from a holomorphic representation of $M_{\theta}$, a character of $A_{\theta}$, and the trivial representation of $N_{\theta}^{+}$. We consider the problem of characterizing the image of the Poisson transform from the principal series representation to a homogeneous line bundle over $G / K$. The main result (Theorem 3.1) asserts that the Poisson transform is injective under certain conditions on parameter and the image is characterized by second-order differential equations, which are given by a $K$-covariant differential operator between homogeneous vector bundles over $G / K$. As a corollary we obtain a characterization of the images of degenerate series representations on $G / P_{\theta}$ under the Poisson transform (Corollary 3. 2).

For the Furstenberg boundary of a Riemannian symmetric space and the Shilov boundary of Hermitian symmetric space of tube type, there are several studies on the Poisson transform ${ }^{5,9,11)}$. We believe that it is of importance to construct differential equations that characterize the image of the Poisson transform explicitly for other boundary components of a symmetric space and this article gives a new example on this problem.

## 2 Notation and preliminary results

2.1 Notation

Let

$$
G=S p(n, \mathbb{R})=\left\{g \in S L(2 n, \mathbb{R}) ;{ }^{t} g J g=J\right\}
$$

where

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

and $I_{n}$ is $n \times n$ identitiy matrix. The group $K=O(2 n) \cap S p(n, \mathbb{R})$ is a maximal compact subgroup of $G$, which is isomorphic to $U(n)$ by

$$
\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right) \in K \mapsto A+\sqrt{-1} B \in U(n)
$$

Let g and $\mathfrak{f}$ be the Lie algebras of $G$ and $K$ respectively. Let $\theta$ denote the coresponding Cartan involution of $G$ and $g$. We have a Cartan decomposition $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$, where $\mathfrak{p}$ is the - 1 -eigenspace of $\theta$ ing.
For $l \in \mathbb{Z}$ let $\tau_{l}$ denote the one-dimensional representation of $U(n)$ given by $\tau_{l}(x)=$ (det $x)^{l}(x \in U(n))$ and we denote corresponding representation of $K$ and $\mathfrak{E}$ by the same notation.

Let $E_{i j}$ denote the $n \times n$ matrix with ( $i, j$ )-entry 1 and all other entries being 0 . We choose a Cartan subalgebra t of $u(n)$ to be the set of diagonal matrices. We define $\varepsilon_{i} \in$ $\sqrt{-1} \mathrm{t}^{*}$ by $\varepsilon_{i}\left(E_{j j}\right)=\delta_{i j}(1 \leq i, j \leq n)$. Let $\Delta$ denote the root system of $(\mathrm{g}, \mathrm{t})$ and $\Delta^{+}$be the positive system of $\Delta$ given by

$$
\Delta^{+}=\left\{2 \varepsilon_{i}, \varepsilon_{j} \pm \varepsilon_{k} ; 1 \leq i \leq n, 1 \leq j<k \leq n\right\} .
$$

For $\gamma \in \Delta$ let $g_{\gamma} \subset g=g \otimes \mathbb{C}$ denote the root space for $\gamma$. Let $\mathfrak{p}^{ \pm}=\Sigma_{\gamma \in \Delta_{n}^{*} g_{ \pm \gamma}, \text { where }}$ $\Delta_{n}^{+}$is the set of non-compact positive roots.

We put

$$
X_{i}=\left(\begin{array}{cc}
E_{i i} & 0 \\
0 & -E_{i i}
\end{array}\right) \in \mathfrak{p} \quad(1 \leq i \leq n)
$$

and $\mathfrak{a}=\sum_{i=1}^{n} \mathbb{R} X_{i}$. Then $\mathfrak{a}$ is a maximal abelian subspace of $\mathfrak{p}$. We put $X_{0}=X_{1}+\cdots \cdots$ $+X_{n}$. Let $e_{i}(1 \leq i \leq n)$ be the linear form on a given by $e_{i}\left(X_{j}\right)=\delta_{i j}$. Let $\Sigma$ denote the restricted root system of the pair $(\mathrm{g}, \mathrm{a})$ and $\Sigma^{+}$be the positive system of $\Sigma$ given by

$$
\Sigma^{+}=\left\{2 e_{i}, e_{j} \pm e_{k} ; 1 \leq i \leq n, 1 \leq j<k \leq n\right\} .
$$

For $\alpha \in \Sigma$ let $\mathrm{g}^{\alpha} \subset \mathrm{g}$ be the root space for $\alpha$. For $\mathrm{g}=\mathfrak{\mathrm { p }}(n, \mathbb{R})$ we have $\operatorname{dim} \mathrm{g}^{\alpha}=1$ for all $\alpha \in \Sigma$. We put $\rho=\frac{1}{2} \sum_{a \in \Sigma^{+}} \alpha$. For any $\lambda \in a_{c}^{*}$ let $A_{\lambda}$ be the element of ac determined by $B\left(H, A_{\lambda}\right)=\lambda(H)$ for all $H \in \mathfrak{a}$, where $B$ denotes the Killing form of gc . For $\lambda, \mu \in \mathfrak{a}^{*}$ we put $\langle\lambda, \mu\rangle=B\left(A_{\lambda}, A_{\mu}\right)$. Since $\left\{e_{1}, \cdots \cdots, e_{n}\right\}$ forms a basis of $\mathfrak{a}^{*}$, any $\lambda \in$ $\mathfrak{a}_{\star}^{*}$ can be written as $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}\left(\lambda_{i} \in \mathbb{C}\right)$. We identify $\mathfrak{a}_{*}^{*}$ with $\mathbb{C}^{n}$ by $\lambda \mapsto\left(\lambda_{1}, \cdots \cdots, \lambda_{n}\right)$. In this identification we have $\rho=(n, n-1, \cdots \cdots, 1)$.

Let $A$ be the analytic subgroups of $G$ corresponding to $a$. Let $\mathfrak{n}^{+}=\sum_{\alpha \in \Sigma^{+}} g^{\alpha}$ and $\mathfrak{n}^{-}=$ $\theta\left(\mathfrak{n}^{+}\right)$. Let $N^{+}$and $N^{-}$be the corresponding analytic subgroups of $G$. Let $M$ be the centralizer of $a$ in $K$. The subgroup $P=M A N^{+}$is a minimal parabolic subgroup of $G$.

Put $\alpha_{i}=e_{i}-e_{i+1}(1 \leq i \leq n-1)$ and $\alpha_{n}=2 e_{n}$. Then the set of simple roots is $\Psi=$ $\left\{\alpha_{1}, \alpha_{2}, \cdots \cdots, \alpha_{n}\right\}$. Let $\left\{H_{1}, \cdots \cdots, H_{n}\right\}$ denote the basis of $a$ which is dual to $\Psi$. We consider subset

$$
\Theta=\left\{\alpha_{2}, \cdots \cdots, \alpha_{n}\right\}
$$

of $\Psi$ and corresponding standard parabolic subgroup $P_{\theta}$ of $G$ with the Langlands decomposition $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}^{+}$such that $A_{\theta} \subset A$. Then the Lie algebra $a_{\theta}$ of $A_{\theta}$ and its orthogonal complement $a(\Theta)$ in $a$ are given by

$$
\mathfrak{a}_{\Theta}=\mathbb{R} X_{1}, \quad \mathfrak{a}(\Theta)=\sum_{i=2}^{n} \mathbb{R} X_{i},
$$

and $M_{\theta} \simeq\{ \pm 1\} \times S p(n-1, \mathbb{R})$. Put $K_{\theta}=M_{\theta} \cap K$ and define a closed subgroup $B_{\theta}=$ $K_{\theta} A_{\theta} N_{\theta}^{+}$of $G$. Notice that the pairs $\left(K, K_{\theta}\right) \simeq(U(n),\{ \pm 1\} \times U(n-1))$ is a Gelfand pair.

### 2.2 Eigenspaces of invariant differential operators

We reviw the main result of Shimeno ${ }^{99}$, which gives a characterization of the image of the Poisson transform.
For a real analytic manifold $X$ we denote by $\mathcal{B}(X)$ the space of all hyperfunctions on $X$. Let $\lambda \in \mathfrak{a}_{\mathbb{E}}^{*}$ and $l \in \mathbb{Z}$. We define

$$
\begin{aligned}
\mathcal{B}\left(G / P, L_{\lambda, l}\right)=\{f \in \mathcal{B}(G) ; f(g m a n)= & e^{(\lambda-\rho)(\log a)} \tau_{l}(m)^{-1} f(g) \\
& \left.g \in G, m \in M, a \in A, n \in N^{+}\right\}
\end{aligned}
$$

and

$$
\mathcal{B}\left(G / K ; \tau_{l}\right)=\left\{u \in \mathcal{B}(G) ; u(g k)=\tau_{l}(k)^{-1} u(g) \text { for any } g \in G, k \in K\right\}
$$

For $f \in \mathcal{B}\left(G / P ; L_{\lambda, l}\right)$, we define the Poisson integral $\mathcal{P}_{\lambda, l}$ by

$$
\mathcal{P}_{\lambda, l} f(g)=\int_{K} f(g k) \tau_{l}(k) d k
$$

Here $d k$ denotes the invariant measure on $K$ with total measure 1.
Let $\mathbb{D}_{l}(G / K)$ denote the algebra of invariant differential operators on $\mathcal{B}\left(G / K ; \tau_{l}\right)$ and $L_{l} \in \mathbb{D}_{l}(G / K)$ denote the Laplace-Beltrami operator acting on $\mathcal{B}\left(G / K ; \tau_{l}\right)$. We have the Harish-Chandra isomorphism

$$
\gamma_{l}: \mathbb{D}_{l}(G / K) \sim \sim S\left(a_{\mathbf{c}}\right)^{w},
$$

where $S\left(\mathfrak{a}_{\mathbf{c}}\right)^{W}$ denotes the set of W -invariant elements in the symmetric algebra $S\left(\mathfrak{a}_{\mathbf{c}}\right)$. Let $\mathcal{A}\left(G / K, \mathcal{M}_{\lambda, l}\right)$ denote the space of all real analytic functions in $\mathcal{B}\left(G / K, \tau_{l}\right)$ satisfying the system of differential equations,

$$
\begin{equation*}
\mathcal{M}_{\lambda, l}: D u=\gamma_{l}(D)(\lambda) u, \quad D \in \mathbb{D}_{\imath}(G / K) . \tag{2.1}
\end{equation*}
$$

We define

$$
\begin{aligned}
e_{\lambda, l}^{-1}=\prod_{1 \leq j<k \leq n} & \Gamma\left(\frac{1}{2}\left(1+\lambda_{j}+\lambda_{k}\right)\right) \Gamma\left(\frac{1}{2}\left(1+\lambda_{j}-\lambda_{k}\right)\right) \\
& \times \prod_{1 \leq i \leq n} \Gamma\left(\frac{1}{2}\left(\lambda_{i}+1+l\right)\right) \Gamma\left(\frac{1}{2}\left(\lambda_{i}+1-l\right)\right) .
\end{aligned}
$$

Theorem 2.1 (Shimeno ${ }^{9}$ ) If $\lambda \in \mathfrak{a}_{c}^{*}$ satisfies the condition


$$
\begin{aligned}
& \text { ( } \varepsilon \text { ) } \\
& \left(\mathcal{P}_{\theta, s, s, c}\right)(x)=\int_{K} P_{\mathcal{S},, t \epsilon}^{e}\left(k^{-1} x\right) f(k) d k . \\
& \text { ҰRЧ7 єо \%иәш! }
\end{aligned}
$$

 $K$-type $\tau_{l}$. Thus the function $\phi_{l, \text {, }}^{\theta}$, is contained in $\mathcal{B}\left(G / P_{\theta} ; l, \varepsilon, s\right)$,

For dominant integral weight $\mu \in \sqrt{-1} t^{*}$, let $V_{\mu}$ denote the irreducible representa-

 component with highest weight $\gamma_{1}+\gamma_{2}$. We define an element of $U\left(g_{\mathrm{c}}\right) \otimes V_{n_{1}+r_{2}}$ by $\mathcal{H} \underline{\theta}=\sum E_{i}^{*} E_{j}^{*} \otimes p_{+}\left(E_{i} \otimes E_{j}\right)$,
(3.4)
 differential operator from $C^{\infty}\left(G / K ; \tau_{l}\right)$ to $C^{\infty}\left(G / K ; \tau_{l} \otimes \operatorname{Ad}_{k} \mid V_{n+r}\right)$. We define $\mathcal{H}+$ similarly. We denote $\mathcal{H}^{\ominus}$ for $\varepsilon= \pm 1$ by $\mathcal{H}^{\ell}$.

We state the main result of this article:
Theorem 3.1 If $s \in \mathbb{C}, l \in \mathbb{Z}$, and $\varepsilon \in\{+1,-1\}$ satisfies condition,

$$
\left\{s+\varepsilon l-n+1, s, s-\varepsilon l, \frac{1}{2}(s+1-|l|)\right\} \cap\{0,-1,-2, \cdots \cdots\}=\emptyset
$$

then the partial Poisson transform $\mathcal{P}_{\theta ; s, l, \varepsilon}$ is a $G$-isomorphism of $\mathcal{B}\left(G / P_{\boldsymbol{\theta}} ; s, l, \varepsilon\right)$ onto
the space of analytic functions $u$ in $\mathcal{B}\left(G / K, \tau_{l}\right)$ that satisfy
Corollary 3.2 If $s \in \mathbb{C}$ satisfies the condition,

$$
s-n+1 \notin\{0,-1,-2, \cdots \cdots\}
$$

$$
\begin{gathered}
\mathcal{H}_{\varepsilon}^{\Theta} u=0 \\
L_{l} u=\left(<\lambda_{s, l, \varepsilon}^{\Theta}, \lambda_{s, l, \varepsilon}^{\Theta}>-<\rho, \rho>\right) u
\end{gathered}
$$then the partial Poisson transform $\mathcal{P}_{\theta, s}$ is a $G$-isomorphism of $\mathcal{B}\left(G / P_{\theta} ; s\right)$ onto the space of analytic functions $u$ on $G / K$ that satisfy

$$
\begin{aligned}
& \prime 0=n_{\ominus}^{-} \mathcal{H} \\
& { }^{0}=n_{\ominus}^{+} \mathcal{H}
\end{aligned}
$$

$$
\begin{aligned}
& >-\left\langle{ }_{\Theta}^{s} Y^{\prime}{ }_{\Theta}^{s} Y>\right)=n^{0} T \\
& \quad 0=n_{\Delta}^{-} \mathcal{H}
\end{aligned}
$$

The proof of the theorem is divided into four steps;

1. The image of $\mathcal{B}\left(G / P_{\Theta} ; s, l, \varepsilon\right)$ under $\mathcal{P}_{\theta, s, l, \varepsilon}$ satisfies (3.6) (Proposition 3.3),2. Solutions of (3.6) and (3.7) satisfy $\mathcal{M}_{i s, l, c, l}$ (Proposition 3.5),
2. Under condition (3.5), $\mathcal{P}_{\theta, s, l, \varepsilon}$ gives an isomorphism of $\mathcal{B}(\Theta ; s, l, \varepsilon)$ onto the joint
3. Under condition (3.17) boundary values of solutions of (3.6) and (3.7) are contained in $\mathcal{B}\left(G / P_{\boldsymbol{\theta}} ; s, l, \varepsilon\right)$ (Proposition 3.11). Proposition 3.3 For any $f$ in $\mathcal{B}\left(G / P_{\theta} ; s, l, \varepsilon\right), u=\mathcal{P}_{\theta, s, l, \varepsilon} f$ satisfies (3.6).
is sufficient to show that $u=P_{s, l, \epsilon}^{\theta}$, satisfies (3.6). We put $F=\mathcal{H}_{-}^{\boldsymbol{\theta}} P_{s, l,-1}^{\theta}$. If $l<-n$, then the restriction of $F$ to $S p(n-1, \mathbb{R}) \subset M_{\theta}$ is a vector in the holomorphic discrete series representation of lowest $K$-type $\tau_{l}$ that is $U(n-1)$-finite of type ( $\tau_{l} \otimes$ $\operatorname{Ad}_{k}\left|V_{r_{1}+r_{2}}\right|_{U(n-1)}$. Since the holomorphic discrete series of $S p(n-1, \mathbb{R})$ with lowest $U(n-1)$-type $\tau_{l}$ equals $S\left(p_{\bar{\theta}}\right) \otimes \tau_{l}$ as $U(n-1)$-modules, $F$ must be identically zero. We have $F \equiv 0$ for all $l$ by analytic continuation. We can show in the same way that $\mathcal{H}_{+}^{\boldsymbol{\theta}}$ $P_{s, l,+1}^{\theta}=0$.
Remark 3.4 The use of operator $\mathcal{H}_{\varepsilon}^{\theta}$ is inspired by Miyazaki, Oda ${ }^{6}$ and Iida ${ }^{4}$, where they construct differential equations for Whittaker functions or matrix coefficients of principal series representations of $S p(2, \mathbb{R})$ by using $K$-covariant differential operators between homogeneous vector bundles over $G / K$ (shift operators in their terminology).

### 3.2 Radial parts of the Hua equations

Proposition 3.5 Any solution of (3.6) and (3.7) satisfies $\mathcal{M}_{18, ., c, c}$,
Let $\varphi_{\lambda, l}$ denote the Poisson integral of the function $1_{\lambda, l} \in \mathcal{B}\left(G / P ; L_{\lambda, l}\right)$ with $\left.1_{\lambda, l}\right|_{K}=\tau_{-l}$, i.e.,

$$
\varphi_{\lambda, l}(g)=\int_{K} \tau_{l}\left(k^{-1} k\left(g^{-1} k\right)\right) \exp <-\lambda-\rho, H\left(g^{-1} k\right)>d k
$$

We shall prove that $\phi_{\lambda, 2}$ is a unique solution of (3.6) and (3.7) such that $u(k x)=$ $\tau_{l}(k)^{-1} u(x)$ for all $k \in K$ and $x \in G$ (Corollary 3.8). Then we can prove Proposition 3.5 in the same way as the proof of Theorem 3.3 in Shimeno ${ }^{11)}$. In the proof of Theorem 3.3 in Shimeno ${ }^{11)}$ we use a characterization of joint eigenfunctions of $\mathbb{D}(G / K)$ by means of an integral formula (Helgason ${ }^{3}$, Ch IV, Proposition 2.4), which can easily be generalized to the case of a homogeneous line bundle.

We define elements $T_{i}(i=1, \cdots \cdots, n), \quad X_{ \pm 2 \varepsilon_{t}} \in g_{ \pm 2 \varepsilon_{t}}(i=1, \cdots \cdots, n)$ and $X_{ \pm \varepsilon, \pm \varepsilon_{k}} \in$ $g_{ \pm \varepsilon\lrcorner \pm \varepsilon_{k}}(1 \leq j \neq k \leq n)$ by

$$
\begin{aligned}
T_{i} & =\left(\begin{array}{cc}
0 & E_{i i} \\
-E_{i i} & 0
\end{array}\right), \quad(1 \leq i \leq n), \\
X_{2 \epsilon_{i}} & =\left(\begin{array}{cc}
E_{i i} & \sqrt{-1} E_{i i} \\
\sqrt{-1} E_{i i} & -E_{i i}
\end{array}\right), \quad(1 \leq i \leq n), \\
X_{\varepsilon_{j}+\varepsilon_{k}} & =\left(\begin{array}{cc}
E_{j k}+E_{k j} & \sqrt{-1}\left(E_{j k}+E_{k j}\right) \\
\sqrt{-1}\left(E_{j k}+E_{k j}\right) & -E_{j k}-E_{k j}
\end{array}\right), \quad(1 \leq j<k \leq n) \\
X_{\varepsilon_{j}-\varepsilon_{k}} & =\left(\begin{array}{cc}
E_{j k}-E_{k j} & -\sqrt{-1}\left(E_{j k}+E_{k j}\right) \\
\sqrt{-1}\left(E_{j k}+E_{k j}\right) & E_{j k}-E_{k j}
\end{array}\right), \quad(1 \leq j<k \leq n)
\end{aligned}
$$

and $X_{-\beta}=\bar{X}_{\beta}\left(\beta=2 \varepsilon_{1}, 2 \varepsilon_{2}, \varepsilon_{1}+\varepsilon_{2}\right)$.
For $m, l \in \mathbb{Z}$ let $h(t ; m, l)$ be the function on $\mathbb{R}^{n}$ given by

$$
h(t ; m, l)=\left(\prod_{j=1}^{n} \cosh t_{j}\right)^{\frac{1}{2}(m+l)}\left(\prod_{j=1}^{n} \sinh t_{j}\right)^{\frac{1}{2}(l-m)}
$$

A function $u$ on $G$ is called $\left(\tau_{-m}, \tau_{-l}\right)$-spherical when it satisfies

$$
u\left(k_{1} g k_{2}\right)=\tau_{m}\left(k_{1}\right)^{-1} u(g) \tau_{l}\left(k_{2}\right)^{-1} \text { for all } g \in G, k_{1}, k_{2} \in K
$$

We will calculate $\left(\tau_{-m}, \tau_{-l}\right)$-radial parts of (3.6). For $S p(2, \mathbb{R})$ this was done by Iida ${ }^{4}$. The calculation for general $n$ reduces to this case.
Proposition 3.6 If $u \in C^{\infty}(G)$ is $a\left(\tau_{-m}, \tau_{-l}\right)$-spherical solution of (3.6), then the function

$$
\begin{equation*}
\phi(t)=h(t ; \varepsilon m, \varepsilon l) u\left(\exp \left(\sum_{j=1}^{n} t_{j} X_{j}\right)\right) \tag{3.9}
\end{equation*}
$$

satisfies

$$
\begin{align*}
\left(2 \partial_{t \jmath} \partial_{t_{k}}+\right. & \left(\operatorname{coth}\left(t_{j}+t_{k}\right)-\operatorname{coth}\left(t_{j}-t_{k}\right)\right) \partial_{t} \\
& +\left(\operatorname{coth}\left(t_{j}+t_{k}\right)+\operatorname{coth}\left(t_{j}-t_{k}\right) \partial_{t_{k}}\right) \phi=0 \tag{3.10}
\end{align*}
$$

for all $1 \leq j<k \leq n$.
Lemma 3.7 The highest weight vector of the irreducible $K$-module $V_{r_{1}+r_{2}} \subset \mathfrak{p}^{+} \otimes \mathfrak{p}^{+}$is $u p$ to constant given by

$$
\begin{equation*}
X_{2 \varepsilon_{1}} \otimes X_{2 \varepsilon_{2}}+X_{2 \varepsilon_{2}} \otimes X_{2 \varepsilon_{1}}-\frac{1}{2} X_{\varepsilon_{1}+\varepsilon_{2}} \otimes X_{\varepsilon_{1}+\varepsilon_{2}} . \tag{3.11}
\end{equation*}
$$

Proof. Since each weight space of $\mathfrak{p}^{+} \otimes \mathfrak{p}^{+}$is multiplicity one, it is enough to show that (3.11) is a highest weight vector with weight $\gamma_{1}+\gamma_{2}$. Since $\alpha+\beta \notin \Delta$ for all $\alpha \in\left\{ \pm \varepsilon_{1}\right.$ $\left.\pm \varepsilon_{2}, \pm 2 \varepsilon_{1}, \pm 2 \varepsilon_{2}\right\}$ and

$$
\begin{equation*}
\beta \in\left\{\varepsilon_{j}-\varepsilon_{k} ; 1 \leq j<k \leq n\right\} \backslash\left\{\varepsilon_{1}-\varepsilon_{2}\right\} . \tag{3.12}
\end{equation*}
$$

Thus it suffices to show that (3.11) is annihilated by $X_{\varepsilon_{1}-\varepsilon_{2}}$. It follows easily from direct computation. So we omit it.
Proof of Proposition 3.6. We prove the proposition for $\varepsilon=-1$. The case of $\varepsilon=+1$ can be proved in a similar way.
The coefficient of vector (3.11) in $\mathcal{H}^{\theta}$ is up to constant given by

$$
\left\|2 \varepsilon_{1}\right\|^{2}\left\|2 \varepsilon_{2}\right\|^{2}\left(X_{-2 \varepsilon_{1}} X_{-2 \varepsilon_{2}}+X_{-2 \varepsilon_{1}} X_{-2 \varepsilon_{2}}\right)-2\left\|\varepsilon_{1}+\varepsilon_{2}\right\|^{4} X_{-\varepsilon_{1}-\varepsilon_{2}}^{2},
$$

which is a non-zero constant multiple of

$$
\begin{equation*}
2 X_{-2 \varepsilon_{1}} X_{-2 \varepsilon_{2}}-\frac{1}{2} X_{-\varepsilon_{1}-\varepsilon_{2} .}^{2} . \tag{3.13}
\end{equation*}
$$

It follows from Proposition 6.6 (ii) and Proposition 7.1 in Iida ${ }^{4}$ that $\left(\tau_{-m}, \tau_{-\imath}\right)$-radial part of element (3.13) gives differential equation (3.10) for $j=1, k=2$. For each $\sigma \in$ $S_{n}$ we get equation (3.10) for $j=\sigma(1), k=\sigma(2)$ from the coefficient

$$
\begin{equation*}
2 X_{-2 \varepsilon_{\sigma 11}} X_{-2 \varepsilon_{\sigma(2)}}-\frac{1}{2} X_{-\varepsilon_{\sigma(1)}-\varepsilon_{\sigma(2)}} \tag{3.14}
\end{equation*}
$$

in $\mathcal{H}_{-}^{\theta} u=0$ of the highest weight vector with respect to the ordering $\varepsilon_{\sigma(1)}>\varepsilon_{\sigma(2)}>$ $\cdots \cdots \cdot>\varepsilon_{\sigma(n)}$.

Let $u$ be a $\left(\tau_{-m}, \tau_{-l}\right)$-spherical solution of (3.7). By Proposition 2.6 in Shimeno ${ }^{10}$, the function $\phi$ given by (3.9) is a solution of the differential equation

$$
\begin{gather*}
\left(\sum_{i=1}^{n} \partial_{t_{i}}^{2}+\sum_{1 \leq j<k \leq n}\left(\left(\operatorname{coth}\left(t_{j}+t_{k}\right)+\operatorname{coth}\left(t_{j}-t_{k}\right)\right) \partial t_{j}\right.\right. \\
\left.+\left(\operatorname{coth}\left(t_{j}+t_{k}\right)-\operatorname{coth}\left(t_{j}-t_{k}\right)\right) \partial t_{j}\right)  \tag{3.15}\\
\left.+\sum_{i=1}^{n}\left(\varepsilon 2 m \operatorname{coth} t_{i}+2(1-\varepsilon l-\varepsilon m) \operatorname{coth} 2 t_{i}\right) \partial t_{i}\right) \phi \\
=\left(s^{2}-(n-\varepsilon l)^{2}\right) \phi .
\end{gather*}
$$

Corollary 3.8 Assume that $\phi$ is a W-invariant solution of (3.10) for $1 \leq j<k \leq n$ and (3.15) that is analytic at $t=0$. Then $\phi$ is a constant multiple of the hypergeometric function $F\left(\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right) ; \lambda_{s, l}^{\theta}, k\right)$ of Heckman and Opdam, where $k$ is given by $k_{ \pm e_{ \pm} \pm e_{k}}$ $=1 / 2(1 \leq j \neq k \leq n)$ and $k_{e_{t}}=\varepsilon m, k_{2 e_{t}}=1 / 2(1-\varepsilon l-\varepsilon m)(1 \leq i \leq n)$. In particular, if $l=m$, then $\phi(t)$ is a constant multiple of $h(t ; \varepsilon l, \varepsilon l,) \varphi_{\lambda_{s, l, c,}, l}\left(\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right)\right)$.
Proof. By the change of variables $y_{i}=-\sinh ^{2} t_{i}(1 \leq i \leq n)$, the system of differential equations (3.10) for $1 \leq j<k \leq n$ and (3.15) become a system of differential equation that was investigated by Debiard and Gaveau ${ }^{11}$. By Theorem $4^{11}$, there is a unique solution up to constant subject to condition that it is $W$-invariant and analytic at $t=0$. Moreover, by Corollay $4^{11}$ it is a joint eigenfunction of commutative family of $W$-invariant differential operators, which turns out to be the hypergeometric function of Heckman and Opdam for the root system of type $B C_{n}$. The latter statement follows from Remark 3.8 in Shimeno ${ }^{10}$.

### 3.3 Boundary value map

If $s \in \mathbb{C}$ satisfies condition

$$
\begin{equation*}
\frac{1}{2}<w \lambda-\lambda, H_{1}>\notin\{0,1,2, \cdots \cdots \cdot\} \text { for all } \bar{w} \in W_{\theta} \backslash W \text { with } \bar{w} \neq \overline{1}, \tag{3.16}
\end{equation*}
$$

then we can define the boundary value map (cf. Section 4 of Shimeno ${ }^{101}$ ),

$$
\beta_{\theta, \mathrm{I}, s, l, \varepsilon}: \mathcal{A}\left(G / K, \mathcal{M}_{\lambda, l}\right) \rightarrow \mathcal{B}(\Theta ; s, l, \varepsilon) .
$$

Condition (3.16) is equivalent to

$$
\begin{equation*}
\{s+\varepsilon l-n+1, s, s-\varepsilon l\} \cap\{0,-1,-2, \cdots \cdots\}=\emptyset . \tag{3.17}
\end{equation*}
$$

Proposition 3.9 Assume that $s, l$, and $\varepsilon \in\{+1,-1\}$ satisfy condition (3.5). Then the partial Poisson transform $\mathcal{P}_{\boldsymbol{\theta}, \mathrm{s}, \mathrm{l}, \mathrm{e}}$ is a $G$-isomorphism of $\mathcal{B}(\Theta ; s, l, \varepsilon)$ onto $\mathcal{A}(G / K$; $\left.\mathcal{M}_{\lambda, l}\right)$.
Proof. We consider the universal covering group of $G$ and may assume that $l \in \mathbb{C}$. First assume conditions (2.2) and (2.3) so that the Poisson transform $\mathcal{P}_{\lambda, l}$ is bijective. It follows from Proposition 4.13 in Shimeno ${ }^{10)}$ that

$$
\beta_{\boldsymbol{\theta}, \mathrm{I}, s, l, \varepsilon \in}=\boldsymbol{c}^{\boldsymbol{\theta}}(\lambda, l) \mathcal{P}_{s, l, \varepsilon^{\circ}}^{\boldsymbol{\varepsilon}} \mathcal{P}_{\hat{\lambda}, 1.1}^{-1}
$$

Here

$$
c^{\ominus}(\lambda, l)=c 2^{-s} \frac{\Gamma(s) \Gamma\left(\frac{1}{2}(s-\varepsilon l)\right) \Gamma\left(\frac{1}{2}(s+\varepsilon l-n+2)\right)}{\Gamma\left(\frac{1}{2}(s+1+l)\right) \Gamma\left(\frac{1}{2}(s+1-l)\right) \Gamma\left(\frac{1}{2}(s-\varepsilon l+n-1)\right) \Gamma\left(\frac{1}{2}(s+\varepsilon l+1)\right)}
$$

where $c$ is a non-zero constant (cf. Section 4 in Shimeno ${ }^{10)}$ ).
Since $\mathcal{P}_{\lambda, l}=\mathcal{P}_{\Theta, s, l, \varepsilon} \circ \mathcal{P}_{s, l, \varepsilon}^{\Theta}$, we have

$$
\begin{equation*}
\beta_{\theta, \overline{\mathrm{I}}, \mathrm{~s}, l, \varepsilon^{\circ}} \mathcal{P}_{\theta, s, l, \varepsilon}=\mathcal{P}_{\theta, s, l, \varepsilon^{\circ}} \beta_{\theta, \mathrm{I}, s, l, \varepsilon}=c^{\theta}(\lambda, l) \mathrm{id} \tag{3.18}
\end{equation*}
$$

Equation (3.18) holds under condition (3.17) by analytic continuation. Therefore the inverse of $\mathcal{P}_{\theta, s, l, \varepsilon}$ is given by $\boldsymbol{c}^{\theta}(\lambda, l)^{-1} \beta_{\theta, \overline{\mathrm{I}}, s, l, \varepsilon}$ under conditions (3.17) and $\boldsymbol{c}^{\theta}(\lambda, l) \neq 0$, which are equivalent to (3.5).

From the Iwasawa decompositon $g=\mathfrak{f} \oplus a \bigoplus \mathfrak{n}^{-}=\mathfrak{f} \oplus a \bigoplus \mathfrak{n}_{\bar{\theta}} \oplus \mathfrak{n}(\Theta)^{-}$and the Poincaré-Birkoff-Witt theorem it follows that

$$
\begin{equation*}
U\left(g_{\mathbf{c}}\right)=U\left(g_{\mathbf{c}}\right) \mathbb{E} \oplus U\left(\mathfrak{a}_{\mathbf{c}}+\mathfrak{n}_{\overline{\mathbf{c}}}\right) \mathfrak{n}_{\bar{\theta} \mathbf{c}} \oplus U\left(\mathfrak{n}(\Theta)_{\overline{\mathbf{c}}}+\mathrm{a}_{\mathbf{c}}\right) \tag{3.19}
\end{equation*}
$$

Let $\pi$ be the projection of $U\left(g_{\mathbf{c}}\right)$ to $U\left(\mathfrak{n}(\Theta) \overline{\mathbf{c}}+\mathrm{a}_{\mathbf{c}}\right)$ with respect to this decomposition. Let $\iota_{s, l, \varepsilon}$ be the algebra homomorphism of $U\left(\mathfrak{n}(\Theta)_{\bar{c}}+a_{\mathbf{c}}\right)$ to $U\left(\mathfrak{n}(\Theta)_{\bar{c}}+\mathfrak{a}(\theta)_{\mathbb{c}}\right)$ such that $\iota_{s, l, \varepsilon}(Y)=Y$ if $Y \in \mathfrak{a}(\Theta)$ and $\iota_{s, l, \varepsilon}(Y)=<\lambda-\rho, Y>$ if $Y \in \mathfrak{a}_{\theta}$. We state the following proposition, which is a special case of Theorem 4.4 in Shimeno ${ }^{10}$.
Proposition 3.10 Assume that $\lambda=\lambda_{s, l, \varepsilon}^{\theta}$ satisfjes condition (3.16). Let $u \in \mathcal{A}(G / K$, $\left.\mathcal{M}_{\lambda, \iota}\right)$ and $U \in U\left(\mathrm{~g}_{\mathbf{c}}\right)$. If $U u=0$ then $\iota_{s, l, \varepsilon^{\circ}} \pi(U) \beta_{\theta, \mathrm{I}, s, l, \varepsilon}(u)=0$.
Proposition 3.11 Assume condition (3.17). Then boundary values $\beta_{\theta, \overline{1}, s, l, \varepsilon}(u)$ of solutions of (3.6) and (3.7) satisfy

$$
\begin{equation*}
\mathfrak{p}_{\Theta}^{\varepsilon} \beta_{\Theta, \overline{1}, s, l, \varepsilon}(u)=0 . \tag{3.20}
\end{equation*}
$$

Proof. We prove the proposition for $\varepsilon=-1$. The case of $\varepsilon=+1$ can be proved in a similar way. We apply Proposition 3.10 to operators

$$
\begin{equation*}
U_{i}=2 X_{-2 \varepsilon_{1}} X_{-2 \varepsilon_{t}}-\frac{1}{2} X_{-\varepsilon_{1}-\varepsilon_{t}}^{2} \quad(2 \leq i \leq n) \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{j k}=X_{-2 \varepsilon_{1}} X_{-e_{j}-e_{k}}-X_{-e_{1}-e_{j}} X_{-e_{1}-e_{k}} \quad(2 \leq j<k \leq n) \tag{3.22}
\end{equation*}
$$

Operator (3.21) is a coefficient in $\mathcal{H}^{\ominus}$ of weight vector of weight $2 \varepsilon_{1}+2 \varepsilon_{j}$ as we see in the proof of Proposition 3.6. We see by direct computations that operator (3.22) is a coefficient in $\mathcal{H}^{\boldsymbol{\theta}}$ of weight vector of weight $2 \varepsilon_{1}+\varepsilon_{j}+\varepsilon_{k}$.

We define elements $E_{ \pm 2 e_{i}} \in g_{ \pm 2 e_{i}}(i=1, \cdots \cdots, n)$ and $E_{ \pm e_{j} \pm e_{k}} \in g_{ \pm e_{j} \pm e_{k}}(1 \leq j \neq k \leq$ $n$ ) by

$$
\begin{aligned}
E_{2 \varepsilon_{i}} & =\left(\begin{array}{cc}
0 & E_{i i} \\
0 & 0
\end{array}\right), \quad(1 \leq i \leq n), \\
E_{e_{j}+e_{k}} & =\left(\begin{array}{cc}
0 & E_{j k}+E_{k j} \\
0 & 0
\end{array}\right), \quad(1 \leq j<k \leq n)
\end{aligned}
$$

$$
E_{e j-e_{k}}=\left(\begin{array}{cc}
E_{j k} & 0 \\
0 & -E_{k j}
\end{array}\right), \quad(1 \leq j<k \leq n)
$$

and $E_{-\alpha}={ }^{t} E_{\alpha}\left(\alpha \in \Sigma^{+}\right)$.
We can show by direct computations that

$$
\iota_{s, l, \varepsilon^{\circ}}^{\circ} \pi\left(U_{i}\right)=2(s-n+1-l)\left(X_{i}-2 \sqrt{-1} E_{-2 e_{i}}+l\right)
$$

which is identical to $2(s-n+1-l) X_{-2 \varepsilon_{t}}$ modulo $\mathfrak{E}_{\theta, l}=\sum_{x \in \ell_{Q}, \mathrm{C}}\left(X+\tau_{l}(X)\right)$, and

$$
\iota_{s, l, \varepsilon^{\circ}} \pi\left(U_{j k}\right)=2(s-n+2-l)\left(E_{e_{k}-e_{j}}-\sqrt{-1} E_{-e_{j}-e_{k}}\right),
$$

which is identical to $2(s-n+2-l) X_{-\varepsilon,-\varepsilon_{k}}$ modulo $\mathscr{f}_{\theta, l}$. Since

$$
\left\{X_{-2 \varepsilon_{i}}, X_{-\varepsilon_{j}-e_{k}} ; 2 \leq i \leq n, 2 \leq j<k \leq n\right\}
$$

forms a basis of $\overline{p_{\bar{\theta}}}$, we have (3.20)
Remark 3.12 We can consider generalizations of Theorem 3.1 for

1. any Hermitian symmetric space,
2. parabolic subgroups that correspond to

$$
\Theta_{k}=\left\{\alpha_{k}, \alpha_{k+1}, \cdots \cdots, \alpha_{n}\right\} \quad(2 \leq k \leq n\} .
$$

We will discuss these problems in a forthcoming paper.

## Acknowledgments

We heartily thank Professor Masatosi Iida, Professor Takayuki Oda, and Professor Toshio Oshima for helpful discussions.

## References

1) A. Debiard and B. Gaveau : Représentation intégrale de certaines séries de fonctions sphériques d'un système de racines BC, J. of Funct. Anal. 96 (1991), pp. 256-296.
2) G. J. Heckman and E. M. Opdam : Root systems and hypergeometric functions I, Comp. Math. 64 (1987), pp. 329-352.
3 ) S. Helgason: Groups and Geometric Analysis, Academic Press, New York, 1984.
4 ) M. Iida: Spherical functions of the principal series representations of $S p(2, \mathbb{R})$ as hypergeometric functions of $C_{2}$-type, Publ. RIMS, Kyoto Univ. 32 (1996), pp. 689-727.
5 ) M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, T. Tanaka : Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. 107 (1978), pp. 1-39.
3) T. Miyazaki and T. Oda : Principal series Whittaker functions on $S p(2, \mathbb{R})$ - Explicit formulae of differential equations -, Proceedings of the 1993 Workshop, Automorphic Forms and Related Topics, The Pyungsan Institute for mathematical sciences.
4) T. Oshima: A realization of Riemannian symmetric spaces, J. Math. Soc. Japan, 30 (1978), pp. 117-132.
5) H. Schlichtkrull : Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston-Basel-Stutgart, 1984.
6) N. Shimeno: Eigenspaces of invariant differential operators on a homogeneous line bundle on a Riemannian symmetric space, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 37 (1990), pp. 201-234.
7) $\qquad$ : The Plancherel formula for spherical functions with a one-dimensional $K$-type on a simply connected simple Lie group of Hermitian type, J. of Funct. Anal. 121 (1994), pp. 330-388.
8) $\qquad$ : Boundary value problems for the Shilov boundary of a bounded symmetric domain of tube type, J. of Funct. Anal. 140 (1996), pp. 124-141.
