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1 Introduction

Let G = Sp(xn, R) (» = 2), K a maximal compact subgroup of G, and let Pobe a
parabolic subgroup-of G with a Langlands decomposition Pe = MeAeNg, where Mo =
{£1}xSp(n—1, R). We consider an induced representation of G from Ps, which is
induced from a holomorphic representation of Ms, a character of Ae, and the trivial
representation of N§. We consider the problem of characterizing the image of the
Poisson transform from the principal series representation to a homogeneous line
bundle over G/K. The main result (Theorem 3. 1) asserts that the Poisson transform is
injective under certain conditions on parameter and the image is characterized by
second-order differential equations, which are given by a K-covariant differential
operator between homogeneous vector bundles over G/K. As a corollary we obtain a
characterization of the images of degenerate series representations on G/Pe under the
Poisson transform (Corollary 3. 2).

For the Furstenberg boundary of a Riemannian symmetric space and the Shilov
boundary of Hermitian symmetric space of tube type, there are several studies on the
Poisson transform®*!Y, We believe that it is of importance to construct differential
equations that characterize the image of the Poisson transform explicitly for other
boundary components of a symmetric space and this article gives a new example on
this problem.

2 Notation and preliminary results
2.1 Notation
Let

G = Sp(n, R) = {g € SL(2n, R); ‘gJg = ]},

where
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and I is #» X » identitiy matrix. The group K = 0(2%#)N Sp(x, R) is a maximal com-
pact subgroup of G, which is isomorphic to U(#) by
< A B

5 )K= A+/=IBE Uln).

Let g and £ be the Lie algebras of G and K respectively. Let 8 denote the coresponding
Cartan involution of G and g. We have a Cartan decomposition g = @y, wherep is
the —1-eigenspace of € ing.

For [/ € Z let r; denote the one-dimensional representation of U(#%) given by r.(x) =
(det x)' (x € U(n)) and we denote corresponding representation of K and Eby the
same notation.

Let E; denote the # X #» matrix with (z, /)-entry 1 and all other entries being 0. We
choose a Cartan subalgebra t of u(#) to be the set of diagonal matrices. We define e; €
J=1t*by e E;) = 85 (1 < 4,7 < n). Let A denote the root system of (g, t) and A* be
the positive system of A given by

At ={2¢e;,giter;1<i<n1<;<k<n}

Fory€e Aletg,Cg = g® C denote the root space for 7. Let p* = 2},c4 8+, Where
 is the set of non-compact positive roots.
We put

E: 0

(S 1<:<
0 _Eii) o i<n)

anda = 2)4; RX. Thenais a maximal abelian subspace of y. We put X, = X+ ------
+ X,.. Let e; (1 < i < n) be the linear form on a given by e X;) = 84. Let X denote the
restricted root system of the pair (g, a) and 2* be the positive system of X' given by

S>t={2e,eiter;1<i<nl1<j<k=<un}

For @ € X let g° C g be the root space for a. For g =8p(%, R) we have dim a* = 1 for
allee . We put p = - Nees+ a. For any A € aé let Aibe the element of ac deter-
mined by B(H, A:) = A(H) for all H € q, where B denotes the Killing form of g¢. For

A pea*weput < A, 4> = B(A,, Au). Since {ey, -+ , en} forms a basis of a*, any A €
af can be written as A = 2% Ae; (A: € C). We identify af with C” by A (4, -+ ) An).
In this identification we have o = (n, n—1, -+~ , 1.

Let A be the analytic subgroups of G corresponding to a. Let nt = 2lses+g®andn” =
O(n*). Let N* and N~ be the corresponding -analytic subgroups of G. Let M be the
centralizer of ain K. The subgroup P = MAN™ is a minimal parabolic subgroup of G.

Put @; = e;—ei+1 (1 < i < n—1) and a» = 2ex. Then the set of simple roots is ¥ =
{a, @, -+ , ). Let {Hy, -+ , H.} denote the basis of a which is dual to ¥'. We consider
subset
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of ¥ and corresponding standard parabolic subgroup Pe of G with the Langlands
decomposition Po = MeAeNg such that Ae CA. Then the Lie algebra ae of Ae and its
orthogonal complement a(®) in a are given by

Qe = RXl, C((@) = 2 ]RX;
i=2
and Me =~ {£1}XSp(n—1, R). Put K¢ = MsN K and define a closed subgroup Be =
KoAeNg of G. Notice that the pairs (K, Ke) = (U(n), {£1} X U(n—1)) is a Gelfand

pair.

2.2 Eigenspaces of invariant differential operators

We reviw the main result of Shimeno®, which gives a characterization of the image
of the Poisson transform.

For a real analytic manifold X we denote by B (X) the space of all hyperfunctions
onX. Let A€ aéand / € Z. We define

B(G/P, L) = {f € B(G); f(gman) = %189 (1)~1(q)
9EG mMEM,ac A, nE N}

and
B(GIK ; ©) = {u € B(G); u(gk) = t(k)'u(g) for any g € G, k € K}.
For f € B(G/P ; Li,1), we define the Poisson integral P,,.f by
Puif(9) = [, Hob)e k).

Here dk denotes the invariant measure on K with total measure 1.

Let D{G/K) denote the algebra of invariant differential operators on B(G/K ; 7.)
and L; € D (G/K) denote the Laplace-Beltrami operator acting on B(G/K ; ). We
have the Harish-Chandra isomorphism

Y DI(G/K) S S(Clc)wy

where S(ac)" denotes the set of W-invariant elements in the symmetric algebra S(ac).
Let A(G/K,Ms,.) denote the space of all real analytic functions in B(G/K, t.) satisfying
the system of differential equations,

Mo :Du = y(D)ADu, DeE DG/K). 2.1
We define

el = lleJ;csn P(%(l +/1j+/1k))p(%(l+/lj—/1k))

x I r(Fae+1+ DIr(+Ge+1- D).

Theorem 2.1 (Shimeno®) If A € ¥ satisfies the condition
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is sufficient to show that # = Pg,.satisfies (3.6). We put F = HEPS, .. If | < —n,
then the restriction of F' to Sp(z—1, R) C Me is a vector in the holomorphic discrete
series representation of lowest K-type r;that is U(n—1)-finite of type (z,®
Adk| Vasn)lum-1. Since the holomorphic discrete series of Sp(z—1, R) with lowest
U(n—1)-type z, equals S(ps)®7: as U(n—1)-modules, F must be identically zero. We
have F° = ( for all / by analytic continuation. We can show in the same way that H¢
P, s?l,ﬂ =0.0

Remark 3.4 The use of operator H? is inspired by Miyazaki, Oda® and lida®, where
they construct differential equations for Whittaker functions or matrix coefficients of
principal series representations of Sp(2, R) by using K-covariant differential opera-
tors between homogeneous vector bundles over G/K (shift operators in their terminol-

ogy).

3.2 Radial parts of the Hua equations

Proposition 3.5 Awny solution of (3.6) and (3.7) satisfies Mg, ...

Let ¢.,: denote the Poisson integral of the function 1,,; € B(G/P; Li,;) with 1.,/x = z_,,
ie.,

eailg) = /;( (k7 k(g k) exp < —A—p, H(g k) > dk.

We shall prove that ¢,.is a unique solution of (3.6) and (3.7) such that u#(kx) =
t(k)'u(x) for all £ € K and x € G (Corollary 3.8). Then we can prove Proposition 3.5
in the same way as the proof of Theorem 3.3 in Shimeno'?. In the proof of Theorem
3.3 in Shimeno'” we use a characterization of joint eigenfunctions of D(G/K) by means
of an integral formula (Helgason®, Ch IV, Proposition 2.4), which can easily be
generalized to the case of a homogeneous line bundle.

We define elements T: (i =1, -+ 1), Xize € @26, (1 =1, oo ,7) and Xiejre, €
8:ere (1< j# k< m)by

T = (_‘;ﬁ lf)‘i>, 1<i<n)
Xau= ./—£1 ) ‘/ZE) (1<i<n),
Koo = J——f(l;stil}k,) ‘/?(Ek_zi‘”)) U<j<k<n
B o R

and X, = X8 = 2¢e, 262, &1+ &2).
For m, ! € Z let h(¢; m, /) be the function on R” given by
1 1
Lm F-m)

w(t;m, 1) = (,H:l cosh tj) +n(jljl sinh t,-)

A function » on G is called (z_n, 7-;)-spherical when it satisfies
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u(kighs) = tm(k)u(g)rkz)for allg € G, k, k. EK.

We will calculate (z_m, z_;)-radial parts of (3.6). For Sp(2, R) this was done by lida®.
The calculation for general # reduces to this case.
Proposition 3.6 If u € C°(G)is a(t—m, 1-1)-spherical solution of (3.6), then the

Junction
n

o(t) = h(t; em, el)u(exp (2 t,-X,-)) (3.9

J=1
satisfies

(20:,06+ (coth(t;+ t) —coth(z;— ) 0,

+(coth(#;+ te) +coth(t— t)0:)p = 0 (3.10)

for all 1<;j< k<n
Lemma 3.7 The highest weight vector of the irreducible K-module Vyysy, C p*Qp* is
up to constant given by

X2E|®X2€z + X252®X261 —%XEI#61®X€1+tz- (3.11)

Proof. Since each weight space of p*®p* is multiplicity one, it is enough to show that
(3.11) is a highest weight vector with weight 71+ 7.. Since a+ 8 & A for all @ € {* ¢
t &, £261, 26} and

BE{ei—e;1 <7< k< n\er—el). (3.12)

Thus it suffices to show that (3.11) is annihilated by X.,-e,. It follows easily from direct
computation. So we omit it. []
Proof of Proposition 3.6. We prove the proposition for ¢ = —1. The case of e = +1
can be proved in a similar way.

The coefficient of vector (3.11) in H® is up to constant given by

“2El||2“2€2||2(X—2€1X-252 + X—ze.X-zez) _2“ a+ 62"4X£€l—52r
which is a non-zero constant multiple of
2X 2 X 20— 5 Xer-ea. (3.13)

It follows from Proposition 6.6 (ii) and Proposition 7.1 in Iida® that (z_n, r_,)-radial
part of element (3.13) gives differential equation (3.10) for j = 1, k¥ = 2. For each ¢ €
S» we get equation (3.10) for j = (1), £ = o(2) from the coefficient

2X—2€amX—2eam —%ng(xx—&‘a(z) (314)

in H2u = 0 of the highest weight vector with respect to the ordering sy > €o(2) >
...... > Ea(n). D

Let « be a (z-m, r-.)-spherical solution of (3.7). By Proposition 2.6 in Shimeno'®, the
function ¢ given by (3.9) is a solution of the differential equation
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n

<2 2+ Z ((coth(#;+ t+) +coth(t— ) dt;

=1 1<j<ks=n

+(coth(#;+ te) —coth(t;— £)) ;) (3.15)

n

+ 2 (e2m coth t:+2(1— el — em) coth 2t,~)3t,->¢

i=1

= (s*—(n—el))9¢.

Corollary 3.8 Assume that ¢ is a W-invariant solution of (3.10) for 1< ;< k<n
and (3.15) that is analytic at t = 0. Then ¢ is a constant multiple of the hypergeometric
Sunction F(exp (D1 £:X:) ; A8, k) of Heckman and Opdam, where k is given by Ksesses
=1/2(0 <j+ k < n)and ke, = em, kze, = 1/2(1—el—em) (1 < i <n). In particular,
if 1 =m, then §(t) is a constant multiple of h(¢t; €l, €l,)Pisic €xp (X 1:X0)).
Proof. By the change of variables y; = —sinh?; (1 < { < #), the system of differen-
tial equations (3.10) for1 < j < £ <unand (3.15) become a system of differential
equation that was investigated by Debiard and Gaveau”. By Theorem 4", there is a
unique solution up to constant subject to condition that it is W -invariant and analytic
at t = 0. Moreover, by Corollay 4" it is a joint eigenfunction of commutative family of
W -invariant differential operators, which turns out to be the hypergeometric function
of Heckman and Opdam for the root system of type BC,. The latter statement follows
from Remark 3.8 in Shimeno'®. (]

3.3 Boundary value map
If s € C satisfies condition

% < WA= Hy > & {0,1,2, -} forall o € Wo\Wwith@ =1,  (3.16)

then we can define the boundary value map (cf. Section 4 of Shimeno!?),
Bets.e: A(GIK,Mu) = B(8;s, 1, €).
Condition (3.16) is equivalent to
{s+el—n+1,s,s—el}N{0, =1, =2, }=4. (3.17)

Proposition 3.9 Assume that s, |, and € € {+1, —1} satisfy condition (3.5). Then the
partial Poisson transform Pesucis a G-isomorphism of B(O;s, !, €) onto A(G/K ;

MA,[).
Proof We consider the universal covering group of G and may assume that / € C.
First assume conditions (2.2) and (2.3) so that the Poisson transform P, is bijective. It

follows from Proposition 4.13 in Shimeno!® that

BO,I.s,l.e = ce(/‘y l)pgl.E"’PI.lb

Here
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r@n(%xy—dﬂr(%@+eﬁ—n+2»

SRR YRR RSO v ey 7eorseD)

where ¢ is a non-zero constant (cf. Section 4 in Shimeno!?).
Since P = Peo,s.,eo P, we have

Be,I.s,t.e"Pe,s,l,e = Pe,s,l.s°/39,1.s,l,e = 09(/1, l)ld (3.18)

Equation (3.18) holds under condition (3.17) by analytic continuation. Therefore the
inverse of Pe,scis given by ¢®(4, )7 Be,1,5,1.c under conditions (3.17) and ¢®(4, /) # 0,
which are equivalent to (3.5). [J

From the Iwasawa decompositon g = ¢PaPn~ = EPaPns@n(O) and the Poincaré-
Birkoff-Witt theorem it follows that

U(ge) = Ulse)t @ U(ac+ne)nec®Un(O)ec+ac). (3.19

Let 7 be the projection of U(gc) to U(n(®)c+ac) with respect to this decomposition.
Let ¢s,.,¢ be the algebra homomorphism of U(n(@)z+ac) to U(n(O)z+a(8)¢) such that
tsr,e(Y) = Yif Y € a(@) andis,,e(Y) = < A—p, Y > if Y € ae. We state the follow-
ing proposition, which is a special case of Theorem 4.4 in Shimeno!®.

Proposition 3.10 Assume that A = A8, satisfjes condition (3.16). Let u € A(G/K,
M) and U € Ulge). If Uu = 0 then ts,,con(U)Bots () = 0.

Proposition 3.11 Assume condition (3.17). Then boundary values Be1,s,.,(%) of solutions
of (3.6) and (3.7) satisfy

p6Be.1.s.1e(u) = 0. (3.20)
Proof. We prove the proposition for e = —1. The case of € = +1 can be proved in a
similar way. We apply Proposition 3.10 to operators
Ui = 2X-20 X205 Xoeres (2< i< ) (3.21)
and
Ui = X2e. Xey-ar— X-er-e;X-er-e (2<j< k< ). (3.22)

Operator (3.21) is a coefficient in H® of weight vector of weight 2¢,+2¢; as we see in
the proof of Proposition 3.6. We see by direct computations that operator (3.22) is a
coefficient in H® of weight vector of weight 2¢,+ ¢;+ &x.

We define elements Eize, € gize, (7 =1, -+ ,n)and Esere, € Breyrec (1 < j+ £ <
n) by
0 Eu .
E2€1 = (0 0 ); (1 < 2 S n))
0 Eux+Ey
Eua=(y =) Q<i<ks<n
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Eyx 0

LN

), 1<j<k<n)
and E_, = ‘E.(a € 37).
We can show by direct computations that

tspeen(U) = 2(s—n+1— I Xi—2/=1E 20+ 1),
which is identical to 2(s —#+1—1{) X-2¢, modulo fe,; = Dxetec( X + 1(X)), and
taeot(Uie) = 2(s— n+2—)(Eer-e;— V= 1E-¢,-el),
which is identical to 2(s —%+2— ) X_¢,- modulo €e,.. Since
{ Xty Xoeyoen;2<i<n,2<j< k <n}

forms a basis of ps, we have (3.20) (J

Remark 3.12 We can consider generalizations of Theorem 3.1 for
1. any Hermitian symmetric space,
2. parabolic subgroups that correspond to

@k = {ak, Qr+1y """ , an} (2 <k Sn}.

We will discuss these problems in a forthcoming paper.
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