Anti-Integral Polynomials, Super-Primitive Polynomials and Flat Polynomials

Ken-ichi YOSHIDA and Susumu ODA*

Department of Applied Math, Okayama University of Science, Ridai-cho, Okayama 700, Japan *Matsusaka Commercial High School, Toyohara, Matsusaka, Mie 515-02, Japan (Received October 5, 1998)

Let *R* be a Noetherian integral domain and R[X] a polynomial ring and let *K* be the quotient field of *R*. Let α be an element of an algebraic field extension *L* of *K* and let $\pi: R[X] \to R[\alpha]$ be the *R*-algebra homomorphism sending *X* to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over *K* with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Let $I_{[\alpha]} := \bigcap_{i=1}^d (R:_R\eta_i)(=R[X]:_R\varphi(x)))$. For $f(X) \in R[X]$, let C(f(X)) denote the ideal generated by the coefficients of f(X). Let $J_{[\alpha]} := I_{[\alpha]}C(\varphi_{\alpha}(X))$, which is an ideal of *R* and contains $I_{[\alpha]}$. The element α is called an anti-integral element of degree *d* over *R* if $Ker \pi = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$. When α is an anti-integral element over *R*, $R[\alpha]$ is called an anti-integral element (i.e., $R = R[\alpha] \cap R[1/\alpha]$) defined in [OY]. The element α is called a super-primitive element of degree *d* over *R* if X = (0) for all $P \in Ass_{R[X]}(R[X]/H)$. We defined the super-primitiveness, anti-integralness and flatness of the ideal *H*. If necessary, we can consider a simple ring-extension R[X]/H.

As was seen in the above, [OSY] concerned a simple extension with certain properties by use of the ideal Ker π . This paper deals with a monic polynomial $\varphi(X)$ in K[X]. We define the super-primitiveness, anti-integralness and flatness of a polynomial $\varphi(X)$. If necessary, we can consider a simple ring-extension $R[X]/(\varphi(X)K[X] \cap R[X])$. When $\varphi(X) \in K[X]$ is an irreducible polynomial, we come back to the case in [OSY]. When $\varphi(X) \in K[X]$ is not an irreducible polynomial, we can extend the super-primitiveness, anti-integralness and flatness to a simple extension which is not necessarily an integral domain.

This paper can be considered to be a continuation of [YOS].

We use the following notation throughout this paper unless otherwise specified:

Let R be a Noetherian integral domain and R[X] a polynomial ring and let K is the quotient field of R. Let H be an ideal of R[X] and let $\varphi(X)$ be a monic polynomial in K[X].

Our unexplained technical terms are standard and are seen in [M1] and [M2].

We start with the following definitions.

Definition 1. Let $\varphi(X)$ be a monic polynomial in K[X] and let $I_{\varphi(X)}^{\mathfrak{p}} := R[X]_{\mathfrak{P}}$ $\varphi(X)$. The polynomial $\varphi(X)$ is called a *super-primitive polynomial* (resp. an *anti-integral polynomial*) if $\operatorname{grade}(I_{\varphi}^{\mathfrak{P}}C(\varphi(X))) > 1$ (resp. if $\varphi(X)K[X] \cap R[X] = I_{\varphi(X)}^{\mathfrak{P}}\varphi(X)R[X]$).

Proposition 2. Let $\varphi(X) \in K[X]$ be a monic polynomial. If the ideal $I_{\varphi(X)}^{\mathbb{R}}\varphi(X)\mathbb{R}[X]$ contains a monic polynomial in $\mathbb{R}[X]$, then $I_{\varphi(X)}^{\mathbb{R}} = \mathbb{R}$, i.e., $\varphi(X) \in \mathbb{R}[X]$.

Proof. Let $f(X) \in I^{\mathbb{R}}_{\varphi(X)}\varphi(X)\mathbb{R}[X]$ be a monic polynomial in $\mathbb{R}[X]$. Then $f(X) = \sum a_i\varphi(X)g_i(X) = (\sum a_ig_i(X))\varphi(X)$ with some $a_i \in I^{\mathbb{R}}_{\varphi(X)}$ and some $g_i(X) \in \mathbb{R}[X]$. Compare the coefficient of the leading term, We conclude that $I^{\mathbb{R}}_{\varphi(X)} = \mathbb{R}$.

Corollary 2.1. Let $\varphi(X) \in K[X]$ be a monic polynomial. Assume that $\varphi(X)$ is a factor of a monic polynomial in R[X] and that $\varphi(X)$ is an anti-integral polynomial. Then $\varphi(X) \in R[X]$.

Proof. By the assumption, there exists a monic polynomial $f(X) \in \varphi(X)k[X] \cap R[X]$. So we have $f(X) \in \varphi(X)K[X] \cap R[X] = I_{\varphi(X)}\varphi(X)R[X]$. Hence $\varphi(X) \in R[X]$ by Proposition 3. \Box

The following example shows that every polynomial $\varphi(X) \in K[X]$ is not always an anti-integral polynomial.

Example 3. Assume that $R \subseteq \overline{R}$ and take $\eta \in \overline{R} \setminus R$. Then $\varphi(X) := X - \eta$ is not an anti-integral polynomial. Indeed, Proposition 2 shows that $\varphi(X) = X - \eta$ is an anti-integral polynomial if and only if $\eta \in R$. So if $\varphi(X)$ is an anti-integral polynomial then $\eta \in R$, which is a contradiction.

It is easy to see the following remark by definition.

Proposition 4. Let $\varphi(X) \in K[X]$ be a monic polynomial. If $\varphi(X)$ is a superprimitive polynomial, then $\varphi(X)$ is an anti-integral polynomial.

Proof. Since $\varphi(X)$ is super-primitive, $H := \varphi(X)K[X] \cap R[X]$ is a super-primitive ideal of R[X]. Note that the ideal H is exclusive i.e., $R \cap H = (0)$. Hence the conclusion follows from [YOS, (1.6)].

2

Let $f(X) = a_0 X^n + a_1 X^{n-1} + \cdots + a_n$ be a polynomial in R[X]. We say that f(X) is a Sharma polynomial in R[X] if there does not exist $t \in R$ with $t \notin a_0 R$ such that $ta_i \notin a_0 R$ for $1 \le i \le n$.

Lemma 5. If both f(X) and $g(X) \in R[X]$ are Sharma polynomials, then f(X)g(X) is a Sharma polynomial.

Proof. Suppose that there exists $p \in Dp_1(R)$ such that $f(X)g(X) \in pR[X]$. Then $f(X) \in pR[X]$ or $g(x) \in pR[X]$ and hence $C(f(X)) \subseteq p$ or $C(g(X)) \in p$, which is a contradiction by [YOS; (1.4)].

Proposition 6. Let $\varphi_1(X), \dots, \varphi_n(X) \in K[X]$ be super-primitive polynomials. Then (1) $\varphi(X) := \varphi_1(X) \dots \varphi_n(X) \in K[X]$ is a super-primitive polynomial; (2) if $\varphi(X) \in R[X]$, then $\varphi_i(X) \in R[X]$ for each $1 \le i \le n$.

Proof. (1) Since $\varphi_i(X)$ is super-primitive, we have $I^{\mathbb{P}}_{\mathfrak{p}(X)}C(\varphi_i(X)) \notin p$ for every $p \in Dp_1(R)$. Take $p \in Dp_1(R)$. Then there exists $a_i \in I^{\mathbb{P}}_{\mathfrak{p}(X)}$ such that $C(a_i\varphi_i(X)) \notin p$. Thus $a_i\varphi_i(X)$ is a Sharma polynomial in $R_p[X]$. Put $a := a_1 \cdots a_n$. Then $a \in I^{\mathbb{P}}_{\mathfrak{p}(X)}$ and $a\varphi(X) = (a_1\varphi_1(X)) \cdots (a_n\varphi_n(X))$. So by Lemma 5, $a\varphi(X)$ is a Sharma polynomial in $R_p[X]$ and hence $C(a\varphi(X)) \notin p$. Therefore we have $\operatorname{grade}(I^{\mathbb{P}}_{\mathfrak{p}(X)}C(\varphi(X))) > 1$. So $a\varphi(X)$ is a super-primitive polynomial.

(2) follows Proposition 4 and Corollary 2.1.

Question. Is the similar statement to Proposition 8 valid for anti-integral polynomials?

The following proposition asserts that a partial answer to the above question is valid.

Proposition 7. Let $\varphi_1(X), \dots, \varphi_n(X) \in K[X]$ be anti-integral polynomials. If $\varphi(X) := \varphi_1(X) \dots \varphi_n(X) \in R[X]$ is a monic polynomial, then $\varphi_i(X) \in R[X]$ for all $1 \le i \le n$.

Proof. Since $\varphi_i(X)$ is an anti-integral polynomial, $\varphi(X) \in \varphi_i(X)K[X] \cap R[X] = I_{\varphi_i(X)}^R \varphi_i(X)R[X]$. So $I_{\varphi_i(X)}^R = R$ by Proposition 2. Thus we conclude that $\varphi_i(X) \in R[X]$. \Box

Example 8. Let $R = k[t^2, t^3]$, where k is a field and t is an indeterminate. Let $\varphi_1(X) := X - t$, $\varphi_2(X) := X + t \in K[X]$. Then neither of $\varphi_1(X)$ nor $\varphi_2(X)$ is an anti-integral polynomial. But $\varphi(X) := \varphi_1(X)\varphi_2(X) = (X-t)(X+t) = X^2 - t^2$ is an anti-integral polynomial.

Proposition 9. Let $\varphi(X) \in K[X]$ and let $\varphi(X) = \varphi_1(X)^{e_1} \cdots \varphi_n(X)^{e_n}$ be the irreducible decomposition in K[X]. Assume that $\varphi_i(X)$ is a super-primitive polynomial for each $1 \leq i \leq n$. Then $I_{\varphi(X)}^{e} = (((I_{\varphi_1(X)}^{e_1})^{e_1} \cdots (I_{\varphi_n(X)}^{e_n})^{e_n})^{-1})^{-1}$.

Proof. $(I_{\varphi_1(X)}^{e_1})^{e_1} \cdots (I_{\varphi_n(X)}^{e_n})^{e_n} \subseteq I_{\varphi(X)}^{e_i}$ is obvious. Since $I_{\varphi(X)}^{e}$ is a divisorial ideal, we have $(((I_{\varphi_1(X)}^{e_1})^{e_1} \cdots (I_{\varphi_n(X)}^{e_n})^{-1})^{-1} \subseteq I_{\varphi(X)}^{e_i}$. Note that both sides of this implication are divisorial. Consider the localization at a prime ideal of depth one, we may assume that (R, m) is a local domain with the maximal ideal $m \in Dp_1(R)$. Since $\varphi_i(X)$ is a superprimitive polynomial, there exists $a_i \in I_{\varphi_i(X)}^{e_i}$ such that $a_i\varphi_i(X)$ is a Sharma polynomial by [YOS, (1.4)]. Put $a := a_1 \cdots a_n$, Then we have $(a_1\varphi_1(X))^{e_1} \cdots (a_n\varphi_n(X))^{e_n} = a\varphi_1(X)^{e_1} \cdots \varphi_n(X)^{e_n}$ is a Sharma polynomial by Lemma 5. Thus $I_{\varphi(X)}^{e_i}\varphi(X)R[X] = a\varphi(X)R[X]$ and hence $I_{\varphi(X)}^{e_i} = aR$. Therefore $I_{\varphi(X)}^{e_i} = (((I_{\varphi_1(X)}^{e_i})^{e_1} \cdots (I_{\varphi_n(X)}^{e_n})^{e_n})^{-1})^{-1}$.

Definiton 10. Let $\varphi(X) \in K[X]$ be a monic polynomial. We say that $\varphi(X)$ is a flat polynomial if $I_{\varphi(X)}^{\mathbb{P}}C(\varphi(X)) = R$.

Poposition 11. Let $\varphi(X)$, $\Psi(X)$ be flat polynomials. Then (1) $\varphi(X)\Psi(X)$ is also a flat polynomial; (2) $I_{\varphi(X)\Psi(X)}^{R} = I_{\varphi(X)}^{R}I_{\Psi(X)}^{R}$; (3) $\varphi(X)$ is a super-primitive polynomial.

Proof. Note that $I_{\varphi(X)}^{R} \cdot I_{\Psi(X)}^{R} \subseteq I_{\varphi(X)}^{R} \cap I_{\Psi(X)}^{R} \subseteq I_{\varphi(X)\Psi(X)}^{R}$. Hence $I_{\varphi(X)}^{R}I_{\Psi(X)}^{R}(\varphi(X)\Psi(X))R[X] \subseteq I_{\varphi(X)\Psi(X)}^{R}\varphi(X)\Psi(X)R[X]$.

(1) Hence $R = I_{\varphi(X)}^{R} I_{\Psi(X)}^{R} C(\varphi(X)\Psi(X)) \subseteq I_{\varphi(X)\Psi(X)}^{R} C(\varphi(X)\Psi(X)) \subseteq R$. Thus $\varphi(X)\Psi(X)$ is flat polynomial.

(2) By the argument in the proof or (1). $C(\varphi(X)\Psi(X))$ is an invertible ideal of R. Thus $I^{R}_{\varphi(X)\Psi(X)} = I^{R}_{\varphi(X)}I^{R}_{\Psi(X)}$.

(3) follows from the definition. \Box

Proposition 12. Let $\varphi(X) \in K[X]$ be a monic polynomial and let $\varphi(X) = \varphi_1(X)^{e_1}$ $\cdots \varphi_n(X)^{e_n}$ be an irreducible decomposition in K[X]. If $\varphi_i(X)$ is a flat polynomial for each $1 \leq i \leq n$, then $I_{\varphi(X)}^{R} = (I_{\varphi_1(X)}^{R})^{e_1} \cdots (I_{\varphi_n(X)}^{R})^{e_n}$ and $I_{\varphi(X)}^{R} \varphi(X)R[X] = (\prod_{i=1}^{n} (I_{\varphi_i(X)}^{R})^{e_i} \varphi_i(X)^{e_i})R[X]$ is an primary decomposition.

Proof. This follows from Proposition 9 and Proposition 11 (1)(2). \Box

Definition 13. Let $\varphi(X) \in K[X]$ be a monic polynomial. We say that $\varphi(X)$ is an *ultra-primitive polynomial* if grade $(I_{\varphi(X)}^{R} + C(\overline{R}/R)) > 1$.

Proposition 14. Let $\varphi(X)$, $\Psi(X) \in K[X]$. be monic polynomials. If both $\varphi(X)$ and $\Psi(X)$ are ultra-primitive polynomials, then so is $\varphi(X)\Psi(X)$.

Proof. Note that $I_{\varphi(X)}^{\mathbb{R}} \cdot I_{\overline{\Psi}(X)}^{\mathbb{R}} \subseteq I_{\varphi(X)}^{\mathbb{R}} \cap I_{\overline{\Psi}(X)}^{\mathbb{R}} \subseteq I_{\varphi(X)\overline{\Psi}(X)}^{\mathbb{R}}$. Since $\operatorname{grade}(I_{\varphi(X)}^{\mathbb{R}} + C(\overline{\mathbb{R}}/\mathbb{R})) > 1$ and $\operatorname{grade}(I_{\varphi(X)}^{\mathbb{R}} + C(\overline{\mathbb{R}}/\mathbb{R})) > 1$, we have $1 < \operatorname{grade}(I_{\varphi(X)}^{\mathbb{R}} I_{\overline{\Psi}(X)}^{\mathbb{R}} + C(\overline{\mathbb{R}}/\mathbb{R})) \leq \operatorname{grade}(I_{\varphi(X)\overline{\Psi}(X)}^{\mathbb{R}} + C(\overline{\mathbb{R}}/\mathbb{R}))$.

Remark 15. (1) We have the following implications:

an ultra-primitive polynomial \Rightarrow a super-primitive polynomial \Rightarrow an anti-integral polynomial.

The reverse implications are not valid in general.

(2) Take $\eta \in K$.

(i) $X - \eta$ is a super-primitive polynomial if and only if grade $(I_{\eta}(1, \eta) > 1)$.

(ii) $X - \eta$ is an ultra-primitive polynomial if and only if grade $(I_{\eta} + C(\overline{R}/R)) > 1$.

(iii) $X - \eta$ is a flat polynomial if and only if $I_{\eta}(1, \eta) = R$.

Definition 16. Let $\eta \in K$.

1) η is called a super-primitive element if grade $(I_{\eta}(1, \eta)) > 1$.

2) η is called an *ultra-primitive element* if grade $(I_{\eta} + C(\overline{R}/R)) > 1$.

3) η is called a *flat element* if and only if $I_{\eta}(1, \eta) = R$.

Remark 17. The above definition is that same as in [OSY], that is, $\eta \in K$ is super-primitive over R if the extension $R[\eta]$ is a super-primitive extension of R in the sense of [OSY]. An element $\eta \in K$ is a flat element if $R[\eta]$ is aflat extension of R.

Proposition 18. Let $\varphi(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d \in K[X]$. If η_i is an ultraprimitive element for each $1 \le i \le d$, then $\varphi(X)$ is an ultra-primitive polynomial.

Proof. Note that $I_{\eta_1} \cdots I_{\eta_d} \subseteq \bigcap_{i=1}^d I_{\eta_i}$. Since $\operatorname{grade}(I_{\eta_i} + C(\overline{R}/R)) > 1$ by definition, $\operatorname{grade}(I_{\eta_1} \cdots I_{\eta_d} + C(\overline{R}/R)) 1$ and hence $\operatorname{grade}(\bigcap_{i=1}^d I_{\eta_1} + C(\overline{R}/R)) > 1$. Therefore grade $(I_{\varphi(X)}^R + C(\overline{R}/R)) > 1$ because $I_{\varphi(X)}^R = \bigcap_{i=1}^d I_{\eta_i}$, which implies that $\varphi(X)$ is an ultraprimitive polynomial. \Box

In the notation as in Proposition 18, even if η_i is a super-primitive (resp. flat) element for each $1 \le i \le d$, $\varphi(X)$ is not necessarily a super-primitive (resp. flat) polynomial. We see this in the following example.

Example 19. Note first that a flat element (resp. polynomial) is a super-primitive element (resp. polynomial). Let $R := k[t^2, t^3]$, where k is a field and t be an indeterminate. Put $\eta_1 := 1/t^3$, $\eta_2 := 1/t^4$ and $\varphi(X) := X^2 + \eta_1 X + \eta_2 = X^2 + (1/t^3) X + (1/t^4)$. Then $I_{\eta_1} = t^3 R$, $I_{\eta_2} = t^4 R$. Hence $I_{\eta_1}(1, \eta_1) = I_{\eta_2}(1, \eta_2) = R$. Thus η_1 and η_2 are flat elements and hence they are super-primitive elements. We have $I_{\varphi(X)}^R = I_{\eta_1} \cap I_{\eta_2} = t^3 R \cap t^4 R = ((t^6, t^7)R$. So we have $I_{\varphi(X)}^R C(\varphi(X) = I_{\varphi(X)}^R(1, \eta_1, \eta_2) = (t^6, t^7)(1, 1/t^3, 1/t^4)R = (t^2, t^3)R \subseteq R$. Thus grade $(I_{\varphi(X)}^R C(\varphi(X))) = 1$, which means that $\varphi(X)$ is not a super-primitive polynomial.

References

- [M1] H. Matsumura : Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
- [M2] H. Matsumura : Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
- [OSY] S. Oda, J. Sato and K. Yoshida : High degree anti-integral extensions of Noetherian domains, Osaka J. Math., 30 (1993), 119-135.
- [OY] S. Oda and K. Yoshida : Anti-integral extensions of Noetherian domains, Kobe J. Math., 5 (1988), 43-56.
- [S] P. Sharma A note on ideals in polynomial rings, Arch. Math., 37 (1981), 325-329.
- [YOS] K. Yoshida, S. Oda and J. Sato: Super-primitive ideals and Sharma polynomials in polynomial rings, Bull. Okayama Univ. of Sci., 33 (1998), 1-9.