Anti-Integral Polynomials, Super-Primitive Polynomials and Flat Polynomials

Ken-ichi Yoshida and Susumu Oda*
Department of Applied Math,
Okayama University of Science, Ridai-cho, Okayama 700, Japan
*Matsusaka Commercial High School,
Toyohara, Matsusaka, Mie 515-02, Japan

(Received October 5, 1998)

Let R be a Noetherian integral domain and $R[X]$ a polynomial ring and let K be the quotient field of R. Let α be an element of an algebraic field extension L of K and let $\pi: R[X] \rightarrow R[\alpha]$ be the R-algebra homomorphism sending X to α. Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=d$ and write $\varphi_{\alpha}(X)=X^{d}$ $+\eta_{1} X^{d-1}+\cdots+\eta_{d}$. Let $\left.I_{[\alpha]}:=\bigcap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)\left(=R[X]:{ }_{R} \varphi(x)\right)\right)$. For $f(X) \in R[X]$, let $C(f(X))$ denote the ideal generated by the coefficients of $f(X)$. Let $J_{[a]}:=$ $I_{[\alpha]} C\left(\varphi_{\alpha}(X)\right)$, which is an ideal of R and contains $I_{[\alpha]}$. The element α is called an anti-integral element of degree d over R if $\operatorname{Ker} \pi=I_{[\alpha]} \varphi_{a}(X) R[X]$. When α is an anti-integral element over $R, R[\alpha]$ is called an anti-integral extension of R. In the case $K(\alpha)=K$, an anti-integral element α is the same as an anti-integral element (i.e., R $=R[\alpha] \cap R[1 / \alpha]$) defined in [OY]. The element α is called a super-primitive element of degree d over R if $J_{[a]} \not \subset p$ for all primes p of depth one. In [YOS], we have treated an ideal H of a polynomial ring $R[X]$ such that $P \cap R=(0)$ for all $P \in A s s_{R[X]}$ ($R[X] / H$). We defined the super-primitiveness, anti-integralness and flatness of the ideal H. If necessary, we can consider a simple ring-extension $R[X] / H$.
As was seen in the above, [OSY] concerned a simple extension with certain properties by use of the ideal Ker π. This paper deals with a monic polynomial $\varphi(X)$ in $K[X]$. We define the super-primitiveness, anti-integralness and flatness of a polynomial $\varphi(X)$. If necessary, we can consider a simple ring-extension $R[X] /(\varphi(X) K[X] \cap R[X])$. When $\varphi(X) \in K[X]$ is an irreducible polynomial, we come back to the case in [OSY]. When $\varphi(X) \in K[X]$ is not an irreducible polynomial, we can extend the super-primitiveness, anti-integralness and flatness to a simple extension which is not necessarily an integral domain.

This paper can be considered to be a continuation of [YOS].
We use the following notation throughout this paper unless otherwise specified:
Let R be a Noetherian integral domain and $R[X]$ a polynomial ring and let K is the quotient field of R. Let H be an ideal of $R[X]$ and let $\varphi(X)$ be a monic polynomial in $K[X]$.

Our unexplained technical terms are standard and are seen in [M1] and [M2].
We start with the following definitions.
Definition 1. Let $\varphi(X)$ be a monic polynomial in $K[X]$ and let $I_{\varphi(X)}^{R}:=R[X]:_{R}$ $\varphi(X)$. The polynomial $\varphi(X)$ is called a super-primitive polynomial (resp. an antiintegral polynomial) if $\operatorname{grade}\left(I_{\varphi}^{R} C(\varphi(X))\right)>1$ (resp. if $\varphi(X) K[X] \cap R[X]=$ $\left.I_{\varphi(X)}^{R} \varphi(X) R[X]\right)$.

Proposition 2. Let $\varphi(X) \in K[X]$ be a monic polynomial. If the ideal $I_{\varphi(X)}^{R} \varphi(X) R[X]$ contains a monic polynomial in $R[X]$, then $I_{\varphi_{(X)}}^{R}=R$, i.e., $\varphi(X) \in$ $R[X]$.

Proof. Let $f(X) \in I_{\varphi(X)}^{R} \varphi(X) R[X]$ be a monic polynomial in $R[X]$. Then $f(X)=$ $\sum a_{i} \varphi(X) g_{i}(X)=\left(\sum a_{i} g_{i}(X)\right) \varphi(X)$ with some $a_{i} \in I_{\varphi(X)}^{R}$ and some $g_{i}(X) \in R[X]$. Compare the coefficient of the leading term, We conclude that $I_{\Phi(X)}^{R}=R$.

Corollary 2.1. Let $\varphi(X) \in K[X]$ be a monic polynomial. Assume that $\varphi(X)$ is a factor of a monic polynomial in $R[X]$ and that $\varphi(X)$ is an anti-integral polynomial. Then $\varphi(X) \in R[X]$.

Proof. By the assumption, there exists a monic polynomial $f(X) \in \varphi(X) k[X] \cap$ $R[X]$. So we have $f(X) \in \varphi(X) K[X] \cap R[X]=I_{\varphi(X)} \varphi(X) R[X]$. Hence $\varphi(X) \in$ $R[X]$ by Proposition 3.

The following example shows that every polynomial $\varphi(X) \in K[X]$ is not always an anti-integral polynomial.

Example 3. Assume thàt $R \subsetneq \bar{R}$ and take $\eta \in \bar{R} \backslash R$. Then $\varphi(X):=X-\eta$ is not an anti-integral polynomial. Indeed, Proposition 2 shows that $\varphi(X)=X-\eta$ is an antiintegral polynomial if and only if $\eta \in R$. So if $\varphi(X)$ is an anti-integral polynomial then $\eta \in R$, which is a contradiction.

It is easy to see the following remark by definition.

Proposition 4. Let $\varphi(X) \in K[X]$ be a monic polynomial. If $\varphi(X)$ is a superprimitive polynomial. then $\varphi(X)$ is an anti-integral polynomial.

Proof. Since $\varphi(X)$ is super-primitive, $H:=\varphi(X) K[X] \cap R[X]$ is a super-primitive ideal of $R[X]$. Note that the ideal H is exclusive i.e., $R \cap H=(0)$. Hence the conclusion follows from [YOS, (1.6)].

Let $f(X)=a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$ be a polynomial in $R[X]$. We say that $f(X)$ is a Sharma polynomial in $R[X]$ if there does not exist $t \in R$ with $t \notin a_{0} R$ such that ta a_{i} $\in a_{0} R$ for $1 \leq i \leq n$.

Lemma 5. If both $f(X)$ and $g(X) \in R[X]$ are Sharma polynomials, then $f(X) g(X)$ is a Sharma polynomial.

Proof. Suppose that there exists $p \in \mathrm{Dp}_{1}(R)$ such that $f(X) g(X) \in p R[X]$. Then $f(X) \in p R[X]$ or $g(x) \in p R[X]$ and hence $C(f(X)) \subseteq p$ or $C(g(X)) \in p$, which is a contradiction by [YOS; (1.4)]. \square

Proposition 6. Let $\varphi_{1}(X), \cdots, \varphi_{n}(X) \in K[X]$ be super-primitive polynomials. Then
(1) $\varphi(X):=\varphi_{1}(X) \cdots \varphi_{n}(X) \in K[X]$ is a super-primitive polynomial;
(2) if $\varphi(X) \in R[X]$, then $\varphi_{i}(X) \in R[X]$ for each $1 \leq i \leq n$.

Proof. (1) Since $\varphi_{i}(X)$ is super-primitive, we have $I_{\varphi_{t}(X)}^{R} C\left(\varphi_{i}(X)\right) \nsubseteq p$ for every $p \in$ $\mathrm{Dp}_{1}(R)$. Take $p \in \mathrm{Dp}_{1}(R)$. Then there exists $a_{i} \in I_{\phi_{i}(X)}^{R}$ such that $C\left(a_{i} \varphi_{i}(X)\right) \nsubseteq p$. Thus $a_{i} \varphi_{i}(X)$ is a Sharma polynomial in $R_{p}[X]$. Put $a:=a_{1} \cdots a_{n}$. Then $a \in I_{\varphi(X)}^{R}$ and $a \varphi(X)=\left(a_{1} \varphi_{1}(X)\right) \cdots\left(a_{n} \varphi_{n}(X)\right)$. So by Lemma $5, a \varphi(X)$ is a Sharma polynomial in $R_{p}[X]$ and hence $C(a \varphi(X)) \nsubseteq p$. Therefore we have $\operatorname{grade}\left(I_{\varphi(X)}^{R} C(\varphi(X))\right)>1$. So $a \varphi(X)$ is a super-primitive polynomial.
(2) follows Proposition 4 and Corollary 2.1.

Question. Is the similar statement to Proposition 8 valid for anti-integral polynomials?

The following proposition asserts that a partial answer to the above question is valid.

Proposition 7. Let $\varphi_{1}(X), \cdots, \varphi_{n}(X) \in K[X]$ be anti-integral polynomials. If $\varphi(X)$: $=\varphi_{1}(X) \cdots \varphi_{n}(X) \in R[X]$ is a monic polynomial, then $\varphi_{i}(X) \in R[X]$ for all $1 \leq i$ $\leq n$.

Proof. Since $\varphi_{i}(X)$ is an anti-integral polynomial, $\varphi(X) \in \varphi_{i}(X) K[X] \cap R[X]=$ $I_{\varphi_{t}(X)}^{R} \varphi_{i}(X) R[X]$. So $I_{\varphi_{i}(X)}^{R}=R$ by Proposition 2. Thus we conclude that $\varphi_{i}(X) \in$ $R[X]$.

Example 8. Let $R=k\left[t^{2}, t^{3}\right]$, where k is a field and t is an indeterminate. Let $\varphi_{1}(X):=X-t, \varphi_{2}(X):=X+t \in K[X]$. Then neither of $\varphi_{1}(X)$ nor $\varphi_{2}(X)$ is an anti-integral polynomial. But $\varphi(X):=\varphi_{1}(X) \varphi_{2}(X)=(X-t)(X+t)=X^{2}-t^{2}$ is an anti-integral polynomial.

Proposition 9. Let $\varphi(X) \in K[X]$ and let $\varphi(X)=\varphi_{1}(X)^{e_{1}} \cdots \varphi_{n}(X)^{e_{n}}$ be the irreducible decomposition in $K[X]$. Assume that $\varphi_{i}(X)$ is a super-primitive polynomial for each $1 \leq i \leq n$. Then $I_{\varphi_{(X)}}^{R}=\left(\left(\left(I_{\varphi_{1}(X)}^{R}\right)^{e_{1}} \cdots\left(I_{\varphi_{n}(X)}^{R}\right)^{e_{n}}\right)^{-1}\right)^{-1}$.

Proof. $\left(I_{\varphi_{1}(X)}^{R}\right)^{e_{1}} \cdots\left(I_{\varphi_{n}(X)}^{R}\right)^{e_{n}} \subseteq I_{\varphi_{(x)}^{R}}^{R}$ is obvious. Since $I_{\varphi(X)}^{R}$ is a divisorial ideal, we have $\left(\left(\left(I_{\varphi_{1}(X)}^{R}\right)^{e_{1}} \cdots\left(I_{\varphi_{n}(X)}^{R}\right)^{e_{n}}\right)^{-1}\right)^{-1} \subseteq I_{\varphi_{\varphi}(X)}^{R}$. Note that both sides of this implication are divisorial. Consider the localization at a prime ideal of depth one, we may assume that (R, m) is a local domain with the maximal ideal $m \in \operatorname{Dp}_{1}(R)$. Since $\varphi_{i}(X)$ is a superprimitive polynomial, there exists $a_{i} \in I_{\phi_{i}(X)}^{R}$ such that $a_{i} \varphi_{i}(X)$ is a Sharma polynomial by [YOS, (1.4)]. Put $a:=a_{1} \cdots a_{n}$, Then we have $\left(a_{1} \varphi_{1}(X)\right)^{e_{1}} \cdots$ $\left(a_{n} \varphi_{n}(X)\right)^{e_{n}}=a \varphi_{1}(X)^{e_{1}} \cdots \varphi_{n}(X)^{e_{n}}$ is a Sharma polynomial by Lemma 5. Thus $I_{\varphi(X)}^{R} \varphi(X) R[X]=a \varphi(X) R[X]$ and hence $I_{\varphi(X)}^{R}=a R$. Therefore $I_{\varphi(X)}^{R}=\left(\left(\left(I_{\varphi_{1}(X)}^{R}\right)^{e_{1}} \ldots\right.\right.$ $\left.\left.\left(I_{\varphi_{n}(X)}^{R}\right)^{e_{n}}\right)^{-1}\right)^{-1}$.

Definiton 10. Let $\varphi(X) \in K[X]$ be a monic polynomial. We say that $\varphi(X)$ is a flat polynomial if $I_{\varphi(X)}^{R} C(\varphi(X))=R$.

Poposition 11. Let $\varphi(X), \Psi(X)$ be flat polynomials. Then
(1) $\varphi(X) \Psi(X)$ is also a flat polynomial;
(2) $I_{\varphi(X) \Psi(X)}^{R}=I_{\varphi(X)}^{R} I_{\Psi_{(X)}^{R}}^{R}$;
(3) $\varphi(X)$ is a super-primitive polynomial.

Proof. Note that $I_{\varphi(X)}^{R} \cdot I_{\Psi(X)}^{R} \subseteq I_{\varphi_{(X)}^{R}}^{R} \cap I_{\Psi(X)}^{R} \subseteq I_{\varphi_{(X)}^{R}}^{R}{ }_{\Psi(X)}$.
Hence $I_{\varphi(X)}^{R} I_{\Psi_{(X)}}^{R}(\varphi(X) \Psi(X)) R[X] \subseteq I_{\varphi(X) \Psi(X)}^{R} \varphi(X) \Psi(X) R[X]$.
(1) Hence $R=I_{\varphi_{(X)}}^{R} I_{\Psi_{(X)}}^{R} C(\varphi(X) \Psi(X)) \subseteq I_{\varphi(X) \Psi(X)}^{R} C(\varphi(X) \Psi(X)) \subseteq R$. Thus $\varphi(X) \Psi(X)$ is flat polynomial.
(2) By the argument in the proof or (1). $C(\varphi(X) \Psi(X))$ is an invertible ideal of R. Thus $I_{\varphi(X) \Psi(X)}^{R}=I_{\varphi_{(X)}}^{R} I_{\Psi_{(X)}}^{R}$.
(3) follows from the definition.

Proposition 12. Let $\varphi(X) \in K[X]$ be a monic polynomial and let $\varphi(X)=\varphi_{1}(X)^{e_{1}}$ $\cdots \varphi_{n}(X)^{e_{n}}$ be an irreducible decomposition in $K[X]$. If $\varphi_{i}(X)$ is a flat polynomial for each $1 \leq i \leq n$, then $\quad I_{\varphi_{(X)}}^{R}=\left(I_{\varphi_{1}(X)}^{R}\right)^{e_{1}} \cdots\left(I_{\varphi_{n}(X)}^{R}\right)^{e_{n}} \quad$ and $\quad I_{\varphi_{(X)}}^{R} \varphi(X) R[X]=$ $\left(\Pi_{i=1}^{n}\left(I_{\phi_{i}(X)}^{R}\right)^{e_{i}} \varphi_{i}(X)^{e_{i}}\right) R[X]$ is an primary decomposition.

Proof. This follows from Proposition 9 and Proposition 11 (1)(2).

Definition 13. Let $\varphi(X) \in K[X]$ be a monic polynomial. We say that $\varphi(X)$ is an ultra-primitive polunomial if $\operatorname{grade}\left(I_{\varphi(X)}^{R}+C(\bar{R} / R)\right)>1$.

Proposition 14. Let $\varphi(X), \Psi(X) \in K[X]$. be monic polynomials. If both $\varphi(X)$ and $\Psi(X)$ are ultra-primitive polynomials, then so is $\varphi(X) \Psi(X)$.

Proof. Note that $I_{\varphi_{(X)}^{R}}^{R} \cdot I_{\Psi_{(X)}^{R}}^{R} \subseteq I_{\varphi_{(X)}^{R}}^{R} \cap I_{\Psi_{(X)}}^{R} \subseteq I_{\varphi_{(X) \Psi(X)}^{R}}^{R}$. Since grade $\left(I_{\varphi_{(X)}^{R}}^{R}+C(\bar{R} / R)\right)$ >1 and $\operatorname{grade}\left(I_{\Phi(X)}^{R}+C(\bar{R} / R)\right)>1$, we have $1<\operatorname{grade}\left(I_{\varphi(X)}^{R} I_{\Psi_{(X)}}^{R}+C(\bar{R} / R)\right) \leq$ grade $\left(I_{\varphi_{(X)}}^{R} \Psi_{(X)}+C(\bar{R} / R)\right.$).

Remark 15. (1) We have the following implications:
an ultra-primitive polynomial \Rightarrow a super-primitive polynomial \Rightarrow an anti-integral polynomial.

The reverse implications are not valid in general.
(2) Take $\eta \in K$.
(i) $X-\eta$ is a super-primitive polynomial if and only if $\operatorname{grade}\left(I_{\eta}(1, \eta)>1\right.$.
(ii) $X-\eta$ is an ultra-primitive polynomial if and only if $\operatorname{grade}\left(I_{\eta}+C(\bar{R} / R)\right)>1$.
(iii) $X-\eta$ is a flat polynomial if and only if $I_{\eta}(1, \eta)=R$.

Definition 16. Let $\eta \in K$.

1) η is called a super-primitive element if $\operatorname{grade}\left(I_{\eta}(1, \eta)\right)>1$.
2) η is called an ultra-primitive element if $\operatorname{grade}\left(I_{\eta}+C(\bar{R} / R)\right)>1$.
3) η is called a flat element if and only if $I_{\eta}(1, \eta)=R$.

Remark 17. The above definition is that same as in [OSY], that is, $\eta \in K$ is super-primitive over R if the extension $R[\eta]$ is a super-primitive extension of R in the sense of [OSY]. An element $\eta \in K$ is a flat element if $R[\eta$] is aflat extension of R.

Proposition 18. Let $\varphi(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d} \in K[X]$. If η_{i} is an ultraprimitive element for each $1 \leq i \leq d$, then $\varphi(X)$ is an ultra-primitive polynomial.

Proof. Note that $I_{\eta_{1}} \cdots I_{\eta_{d}} \subseteq \bigcap_{i=1}^{d} I_{\eta_{i}}$. Since $\operatorname{grade}\left(I_{\eta_{t}}+C(\bar{R} / R)\right)>1$ by definition, $\operatorname{grade}\left(I_{\eta_{1}} \cdots I_{\eta_{d}}+C(\bar{R} / R)\right) 1$ and hence $\operatorname{grade}\left(\cap_{i=1}^{d} I_{\eta_{1}}+C(\bar{R} / R)\right)>1$. Therefore grade $\left(I_{\varphi(X)}^{R}+C(\bar{R} / R)\right)>1$ because $I_{\varphi(X)}^{R}=\bigcap_{i=1}^{d} I_{\eta_{i}}$, which implies that $\varphi(X)$ is an ultraprimitive polynomial.

In the notation as in Proposition 18, even if η_{i} is a super-primitive (resp. flat) element for each $1 \leq i \leq d, \varphi(X)$ is not necessarily a super-primitive (resp. flat) polynomial. We see this in the following example.

Example 19. Note first that a flat element (resp. polynomial) is a super-primitive element (resp. polynomial). Let $R:=k\left[t^{2}, t^{3}\right]$, where k is a field and t be an indeterminate. Put $\eta_{1}:=1 / t^{3}, \eta_{2}:=1 / t^{4}$ and $\varphi(X):=X^{2}+\eta_{1} X+\eta_{2}=X^{2}+\left(1 / t^{3}\right) X+\left(1 / t^{4}\right)$. Then $I_{\eta_{1}}=t^{3} R, I_{\eta_{2}}=t^{4} R$. Hence $I_{\eta_{1}}\left(1, \eta_{1}\right)=I_{\eta_{2}}\left(1, \eta_{2}\right)=R$. Thus η_{1} and η_{2} are flat elements and hence they are super-primitive elements. We have $I_{\varphi(X)}^{R}=I_{\eta_{1}} \cap I_{\eta_{2}}=t^{3} R \cap t^{4} R=$ $\left(\left(t^{6}, t^{7}\right) R\right.$. So we have $I_{\varphi(X)}^{R} C\left(\varphi(X)=I_{\varphi(X)}^{R}\left(1, \eta_{1}, \eta_{2}\right)=\left(t^{6}, t^{7}\right)\left(1,1 / t^{3}, 1 / t^{4}\right) R=\left(t^{2}, t^{3}\right) R\right.$ $\subsetneq R$. Thus grade $\left(I_{\varphi(X)}^{R} C(\varphi(X))\right)=1$, which means that $\varphi(X)$ is not a super-primitive polynomial.

References

[M1] H. Matsumura : Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
[M2] H. Matsumura : Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
[OSY] S. Oda, J. Sato and K. Yoshida: High degree anti-integral extensions of Noetherian domains, Osaka J. Math., 30 (1993), 119-135.
[OY] S. Oda and K. Yoshida : Anti-integral extensions of Noetherian domains, Kobe J. Math., 5 (1988), 43-56.
[S] P. Sharma : A note on ideals in polynomial rings, Arch. Math., 37 (1981), 325-329.
[YOS] K. Yoshida, S. Oda and J. Sato: Super-primitive ideals and Sharma polynomials in polynomial rings, Bull. Okayama Univ. of Sci., 33 (1998), 1-9.

