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Abstract

Equations describing the surface waves of the binary stars are studied as an analogy
to that of water on the earth. Except the weak gravity wave, such waves can be
nonlinear ones. As is expected, the equations of the surface wave in the rotating frame
of reference around the center of mass of two components are reduced to the so-called
Korteweg-de Vries (KdV) equation and non-linear Schridinger (NLS) equation acoord-
ing to its“depth”. As is well known these equations have the solution of soliton. The
solitons can cause various kind of activities of binary star systems especially when
they are sent to the other component of a close binary system through the inner
Lagrangian point.

1 Introduction

According to the recent result of astronomical observations, more than half of the
stars are thought to be membership of some binary or multiple star systems. Therefore
studies of the structure and evolution of not single stars but steller systems have
become important for the purpose of understanding the real content of Galaxy and the
Universe. From the point of view of stellar photometric observations, we could find
various kind of activities that are not yet understood completely. The aim of this paper
is to find out the equations which describe the nonlinear behavior of the surface waves
like soliton solutions. Before preceeding to the equation itself, we describe the
hydrodynamical properties of the suface of stars in section 2 where we show the
incompressibility is valid. In section 3, we give basic equation describing the surface
wave in the rotating frame of reference. In section 4, we derive an equation describing
the propagation of the surface (shallow-water) wave which can be reduced to the
so-called Korteweg-de Vries (KdV) equation whose solution is well known as solitons.
In the final section we mention about the opposite (deep-water) case. Also some
comments are given for further development of the theory.

2 Properties of matter on the stellar surface

In order to apply the theory of gravity wave to the stellar surface, we must be sure
that the constituent matter is incompressible. It can be proved in the similar way to the
case of pre-recombination universe.
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" The equation of state of the stellar material is a combination of gas and radiation.
As the temperature of it is thought to be higher than that of hydrogen recombination
(approximately 3000K), the pressure of gas and radiation are written as follows :

g = %RaT (1)

where ¢ is a Thomson scattering cross section, R, is the gas constant and 7 and p are
temperature and density, respectively. As the total pressure of the matter is P = P,
+ Pr, the sound velocity cs is

_ /dp . |/, P
Cs = do rp. (3)

This last relation is valid for normal (main sequence) stars like the Sun.
To calculate the compressibility defined as %%% = ek’ we insert the solar values
s
into these quantities. As a result we obtain for the compressibility as

10~®cm?/ dyne
This value is much smaller (by approximately 10-!°) than that of water on the earth.

Accordingly the validity of the incompressibility on the surface of stars is guaranteed.

3 Basic equations
The Euler equation which describes the flow of ionized gas in the binary systems is

%@‘—+2§x 7= —Xpﬂ—wc-wg, (4)

where Q is an angular velocity, and ¢¢ and ¢ are gravitational and rotational poten-
tials given as follows, respectively :

Vigo = 4nGo, Vg = —4(X*+ Y. (5)
The equation of continuity is
Do, i
Di +odiv = 0. 6)
As we can assume the incompressibe and irrotational flow for # = div®,.e.
AD =0, (7)
we obtain
%+%+%Igrad¢|z+ b+ datd = 0. (8)

Here ¢ is due to the rotation of the system with respect to the inertial frame of
reference given by the following equations :
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V¢ =20 xVd, V2) = 0. 9)

As the surface of the star is the equipotential ones, we adopt a different coordinate
system from the case on the earth. The most useful system is cylindrical one (7,6,z2),
where z-axis is parallel to that of its rotation. Then we take the following coordinate
system whose origin is the center of mass of the system :

x=1r0,y=r—r, 2= 2. (10)
Here, we assume the surface of the star is a sphere. [Fig. 1]

4 Equations of the surface wave — the case of shallow “water”

Let 7(x,z,¢) describe the surface wave. According to the following kinematic bound-
ary condition

%l; =0; F=y—n(x,zt), W

we get

0P _ 0d7 04 9y
oy 6‘t+3x ox' 12

Aty = — h (bottom),

(grad®). = 0. 19

Asy

0 denotes the equipotential surface, from Euler equation we get

Fig. 1 Coordinate system adopted fo describing the surface waves.
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+ (( )’( )’)+y77+¢—0 (14)

where g is a gravitational accelleration at the surface (radius 7). At first we consider
the case shallow-“Water”. As usual, we take the so-called Gardner-Morikawa transfor-
mation :

&= e (x—cot) , r = %, 19
Here, € is expressed by % (depth) and & (wave number) as follows :
e = hnk. (16)
Now we expand ® (velocity potential) and 7 as the following series :

O(x,y,t) = e [@V(E,y,1)+ed?(E,y,7)+...], an
7(x,t) = e[np(&,r)+ en®(&, ) +...]. 19

By making use of the reductive peturbation method, we obtain for 7

(1) (1) 3. ( 3 1)
o713 < 335 +lc(,h2"a§z —a(- a—a%s— a” ) =0, 19

where Q is the z-component of . The last term is additional to KdV equation.
However, if we define ¢ as

) 2¢oh

we get the following equation
e —€+ & oh’+0h3)7€§5 —0. 2

This is exactly the same form as the Korteweg-de Vries (KdV) equation, whose
solution is solitary wave (soliton!).

5 Discussion — the case of deep “water” and other cases

For majority of the lobe-filling components of binary systems, it is rather realistic
to consider the opposite case of “deep-water” wave (no actual bottom). To treat this
problem, we make use of the procedure for deriving the envelope soliton. At first, we
assume the potential ¢ in the basic equation of motion Eq (8) is connected with the
Keplerian rotation frequency Q, in such a way as

¢ =gn.

Then from Eq (9) and the relation 7~ exp{i(kox — wot)}, we get
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' = 9 %o
g o

We introduce a small parameter e~|k— k|, and another G-M transformation given
by

£ =elx—cot) , 1= ¢t 22)

and furthermore the following series expansion :

7 = (7" (&, 1)+ c.c)+ (0 + gBVE+ p®PE2 L c.c)+ ..., 3
@ = e(¢"V(E,y,7)+ PVE+c.c)+ (PO + ¢PVE+ . )+ ..., (24)
where
E = expli(kwx — wt)]
and

Wo = a)(ko)-

Substituting these into Egs (8), (9), (10) and (11), we obtain the following Non Linear
Schrodinger (NLS) equation,

1,1) 2,,(1,1)
ia”ar +u agEz +u|p®hEpth = ¢ 25)
with the dispersion relation
wo = Vklg+g)o, coo = %. 0 = tanhkory (26)

and formula of the group velocity
Cgo = 2(;;—006[6+k07’o(1—0'2)]. @n

The explict forms of the coefficients ¢ and v are not given here because of their
tediousness. NLS equation has a sort of soliton solution such as

Aly
V),

2
7Y = Asech g—;éexp(i

Finally we mention about the most spectacular case of close binary star systems
where one component fills the so-called Roche-lobe (common equipotential suface of
the two components). In this case, the solitary waves will surely be transferred to the
other component through the inner Lagrangian point. The treatment near the cusp
seems to be difficult but not so hopeless. The study by Kakutani® on “Tsunami” is
useful for our case. He derived the following soliton equation for the shallow water
case of the uneven bottom :
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1) (1) 3.,,(1)
agz, +C|77(1)ags + ¢z aags —Caf;? 77“)=0.

The problem is how we interpret the “bottom”. Our case seems to be a counterpart
of this for that of deep “water”. At any rate soliton can be a model of flare-like light

curves obtained in some close binary systems detected by the high-speed photometry
(See Tanabe et al?, and Marar et al?).
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