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1 Introduction

In this article we consider the problem of characterizing the image of the Poisson
transforms from the Shilov boundary of the Siegel upper half plane H, to a homogene-
ous line bundle over H; ;

H,=1{Z € Mx(C);*Z=2Z,1m Z >0} = Sp(n, R)/U(n).

The space {Z € M.(R) ; ‘Z = Z} is a dense subspace of the Shilov boundary of H,,
which is a small component of the boundary of H, in the maximal Satake
compactification.

We define the Poisson integrals of functions on the Shilov boundary, which is a
generalization of the Poisson integrals on the complex upper half plane. The main
result (Theorem 3. 1) asserts that we can characterize the image by second-order
differential equations.

In the case of trivial line bundle over Hy, i. e. the case of functions on H,, the answer
was given by Johnson® for harmonic functions and by Sekiguchi® for arbitrary
eigenfunctions of invariant differential operators on H,.. Our result is a generalization
of their results to the case of homogeneous line bundles over Hx.

To prove the theorem we use techniques and results in Shimeno”® 9.

2 Notation and preliminary results
2. 1 Notation
Let

G = Sp(n, R) = {g € SL(2%n, R) ; ‘gJg = J},
where
0 In

and I, is »Xn identity matrix. The group K = O(2%) N Sp(xn, R) is a maximal
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compact subgroup of G, which is isomorphic to U(%) by
( A B

S )eK—»A+/—_13€ U(n).

Let g and £ be the Lie algebras of G and K respectively. Let 6 denote corresponding
Cartan involution of G and g. We have a Cartan decomposition g = Py, where p is the
—1-eigenspace of 4 in g.

For / € Zlet r, denote the one-dimensional representation of /() given by r.x) =
(det x)' (x € U(#n)) and we denote corresponding representation of X and £ by the
same notation.

Let E;; denote the n X » matrix with (7, /)-entry 1 and all other entries being 0. We
choose a Cartan subalgebra t of u(x) to be the set of diagonal matrices. We define &;
€ V/—1t* by eEy) = 8i(1 < i, j < n). Let A denote the root system of (g, t) and A*
be the positive system of A given by

A" ={2e, g;Fen;1<i<n1<j<k<n)

For y € A let g, C gc = g®=rC cenote the root space for y. Let p* = 2lye 18+, Where
» is the set of non-compact positive roots. We have pc = p*+p~ and [p*, p~] = fc.
We put

E; 0

Xi=< 0 —E.

) €y (1<i<n)
and a = 2% R X.. Then a is a maximal abelian subspace of p. We put Xo = X+ ---
+Xa. Let el < i < #) be the linear from on a given by e{X;) = &;. Let 3 denote

the restricted root system of the pair (g, a) and 2* be the positive system of 3 given
by

2t=2e,ete;1<i<nl1<j<k<n.
For @ € 2} let " C g be the root space for a. For ¢ = 8p(#, R) we have dimg® = 1 for

all € 2. We put p = _1'2ae}:~a’. For any A € a¢ let A, be the element of ac deter-
2

mined by B(H, Ai) = A(H) for all H € a, where B denotes the Killing form of gc. For
A, 1 € ag we put <A, 4> = B(As, Au). Since {e}, *, ea} forms a basis of a*, any A € at
can be written as A = 2%.14e(d: € C). We identify at with C” by A— (A, A,). In
this identification we have o = (%, n—1, -, 1).

Let A be the analytic subgroups of G corresponding to a. Let n* = 3,ez-% and n~
= @(n*). Let N* and N~ be the corresponding analytic subgroups of G. Let M be the
centralizer of a in K. The subgroup P = MAN* is a minimal parabolic subgroup
of G.

We cosider the subset & = {e;—e:+1; 1 < i < n—1} of simple roots and correspond-
ing standard parabolic subgroup P: of G with the Langlands decomposition Pz =
M=zA=N# such that Az C A We have
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ro1
az = RX,, a(Z)= g}_lR(Xr—XiH),

2. 2 Eigenspaces of invariant differential operators

We review the main reslt of Shimeno”, which gives a characterization of the image
of the Poisson transform.

For a real analytic manifold X we denote by B(X) the space of all hyperfunctions
on X. Let A€ a¢ and / € Z. We define

B(G/P, Li.)) = {f € B(G) ; f(gman) = e P00, (m)"'f(g)
gEG mMEM, ac A n<E Nt}

and
B(G/K ; ©) = {u € B(G) ; u(gk) = tlk)'u(g) for any g € G, k € K},

For f € B(G/P ; L.,), we define the Poisson integral P..f by

P.f(8) = [ F(gh)rdk)ak.

Here dk denotes the invariant measure on K with total measure 1.

For A€ af and ! € Z let ¢.,: denote the Poisson integral of the function 1., €
B(G/P ; L) with ].A,IIK =r4ie,

eidg) = An(k“x(g“k)) exp {—A—p, H(g 'k)> dk.

Let D ,(G/K) denote the algebra of invariant differential operators on B(G/K ; r.)
and L, € D (G/K) denote the Laplace-Beltrami operator acting on B(G/K ; 7.). We
have the Harish-Chandra isomorphism

Y Dz(G/K):’ S(ac)w,

where S(ac)” denotes the set of W-invariant elements in the symmetric algebra S(ac).
ForA€ ot and ! € Z let A(G/K, M) denote the space of all real analytic functions
in B(G/K, r:) satisfying the system of differential equations,

Mui: Dy = y{D)(ADu, D<€ D(G/K).

For A € a¢ and / € Z we define

eit= T I+a+a)rcGa+a-a)

lsj<ksn

x 1L nr(%(/w 1+ 1))1“(%(/1,-+ 1-0).
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Theorem 2. 1 (Shimeno”) If A € af satisfies the condition

{A, &>

—2<a, @

&{1,2, 3,} for all a e (2. 1)

e + 0, (2. 2)
then the Poisson transform Pi. is a G-isomorphism of B(G/P i L) onto
A(GIK, Ma,.).

Under the condition of the above theorem, the inverse of the Poisson transform is
given by the boundary value map up to a non-zero constant multiple.

3 The Poisson transforms and the Hua equations
3. 1 Poisson transform for degenerate series representations

Let s C and € € {0, 1}. Let o denote the one-dimensional representation of M=
that corresponds to the character g— (sgn(det g))¢ (¢ € GL(%, R)) by the isomorphism
Mz =~ GL(n, R). Let o be the linear form on as defined by 0'(Xo) = n. We define

B(G/Ps ; &, 5) = {f € B(G) ; flgman) = o(m) et~ 2m+mwiosa z(g)
9E€ G, m E Mz, a € Az, n € Ni).

For s € C we define Af € af by
AF= (s+%(n—l), s+E(n—3),, s—%(n—l)). (3.1)

Then we have

B(G/Ps ; €, 5) € B(G/P, Li.),
Ps(B(G/Ps ; ¢, s)) and C A(G/K, Maz,0). (3.2

For f € B(G/P: ; ¢, s) and [ € Z with | = £ mod 2 we define
Peaif (1) = [ Fak)zk)d,

Let P£, be a unique function on G such that g+ P£(g™') is an element of
B(G/P: ; &, —5) and PE|K = r_,. A straightforward calculation shows that

(Pooif)x) = [ PE(K2)F(k)d. (3.3)

Let {E.} be a basis of p* and {E}} be the dual basis of p~ with respect to B. Let
U(gc) denote the universal enveloping algebra of gc. We cosider the element of
U(gc)®f¥c defined by

it = gEiE;"@p([Ef, E¥]), (3.4)

where p denotes the orthogonal projection of £¢ onto (Es)¢ = [f¢, tc]. Notice that HZ
defines a homogeneous differential operator from C*(G/K; r.) to
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C*(G/K, 1/ ®Adk|(£s)c), which does not depend on the choice of basis. We call 3¢ the
Hua operator.

We state the main result of this article :

Theorem 3. 1 Assume s € C and | € Z satisfy the condition,

—s+ 250 ¢ (111 21l 312} U (8/2, 5/2, 7/2,+). (3.5)

Then the Poisson transform is a G-isomorphism of B(G/Pz ; €, s) onto the space of
analytic functions u on X that satisfy

HE u =0, (3. 6)

Lt = 2y (s+ ”;flxs— ”jl)u. (3.7

Notice that condition (3. 5) is equivalent to conditions (2. 1) and (2. 2) for A§{. The
proof of the theorem is divided into three steps ;
1. Any element in the image of P =5, satisfies (3. 6) (Proposition 3. 2),
2 . Solutions of (3. 6) and (3. 7) satisfy M i, (Proposition 3. 3),
3 . Under condition (2, 1) and (2. 2) boundary values of solutions of (3. 6) are contained
in B(G/Ps ; €, s) (Section3. 3).
Proposition 3. 2 For any f in B(G/Ps ; ¢, s), u = P3s.f satisfies (3. 6).
Proof. 1t is sufficient to show that » = P£, satisfies (3. 6). We put F = HgPs.. It is
a function from G to (£s)c such that

F(namk) = c:(m)e+zn+0eosa . (py-1Ad(£)F(e),

for all k€ K, m € M=, a € A=z and n € Ns, and in particular,
F(mk) = od(m)r(k)Ad(k)F(e),

for all k€ K and m € M= N K. We will show that F must be identically zero. The
existence of such F is equivalent to the existence of vectors in 8u(#x) that follow the
representation ¢. under the adjoint action of O(n). Since 8u(zn) is the irreducible
representation of U(n) with highest weight e1— e, it has no non-zero SO(n)-fixed
vector for # = 3 by the Cartan-Helgason theorem (cf. Helgason®, Chapter 5, Corollary
4. 2). For n =2,
0 1
(5 o)

is a unique SO(2) fixed vector in 8u(2) up to constant. But this vector does not follow
o: = 1 under the adjoint action of

( (1) —01>€ 0(2).
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3. 2 Radial parts of the Hua equations

Proposition 3. 3 Any solution of (3.6) and (3.7) is contained in A(GIK,M.z..). We
shall prove that ¢.,. is a unique solution of (3. 6) and (3. 7) such that ulkx) =
(k)" u(x) for all £ € K and x € G (Corollary 3. 5). Then we can prove Proposition
3. 3 in the same way as the proof of Shimeno?, Theorem 3. 3. In the proof of Theorem
3. 3% we use a characterization of joint eigenfunctions of D(G/K) by means of an
integral formula (Helgason®, Ch IV, Proposition 2. 4), which can be generalized to the
case of a homogeneous line bundle easily.

We define elements Ti(i = 1,--, n), Xioe € 82267 = 1,7+, n) and Xieyeer € Gresren
1<j*k<u)by

T.=( —(1)5“ i“' ) <i<n
Xze,=< J__EIE JiE ) (1<i<n),
Xepren = ( J—_)::(JkEiik;Ek,) ’/?(i"'__;i“) ) 1<j<k<n),
ool By ) 0y

and X_p = X (B = 2e1, 26, e1% ).
A function u on G is called (7-m, 7-.)-spherical when it satisfies

u(kighs) = tn(k) " u(g)r(ke) for all g € G, by, b € K.

Proposition 3. 4 If u € C™(G) is (r-m, r-1)-spherical and satisfies HEwu =0, then
the function

é(t) = h(t ; m, Du(exp(SI14:X;)) (3. 8)
satisfies

(0%+(2(1— /—m)coth 2t;+2m cotht;)dy

3.9
— 0u*—(2(1— [~ m)coth 2t,+2m cothte)du)d = 0 (3.9)

Jor all 1 <j < k < n, where Wt ; m, 1) is given by

F(1-m)

n dmins n
Wt m, 1) = <jl;[lcosh tj) (jl'[ﬂsmh t,)

Proof. The coefficient of T;— T, (1 < j < k£ < ) in HZ is given by

2[ YTI_ Tkv E!]Ei*:

which is a non-zero constant multiple of
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XnX—n_XnX-n- (3. 10)
By lida®, Lemma 5. 1, (z-m, z-:)-radial part of (3. 10) is given by

0%,— 0%+ 2coth 2¢;0:,—2coth 240,
—(I coth 2x —m sinh™ 2x)24(/ coth 2y —m sinh™ 2y)2

Thus (3. 9) follows from a straightforward computation. []

It follows from Proposition 3. 4 and Shimeno®, Proposition 2. 6 that the function %
is a (z_m, -1)-spherical solution of (3. 6) and (3. 7) if and only if the function ¢ given
by (3. 8) is a solution of

(0%+@2m coth t:+2(1—!—m)coth 2t:)d:,
+ g(coth( ti+ tj)(6¢,+ at,) + (coth( ti— t,-)(at,— 6t,))¢

= (sz—(%(nﬂ)—l)z)qs (3.11)

forl1<i<

Corollary 3. 5 Let u be a (7-m, -1)-spherical solution of (3.6) and (3.7). Then the
Sfunction ¢ given by (3. 8) is a constant multiple of the hypergeometric function
F(exp(Z%14:X:) ; A5, k) of Heckman and Opdam, where k is given by kreyse, = 1/2 (1
<7+ k< n) and ke = m, ke, = 1/2(0—1—m) (1 < i < n). In particular, if | = m,
then ¢(t) is a constant multiple of h(t ; I, ). (exp(D=1£:X:)).
Proof. By Yan'®, Theorem 2. 1, there is a unique solution of (3. 11)for 1 < { < nup to
constant subject to condition that it is W-invariant and analytic at ¢+ = 0. Moreover,
by Beerends-Opdam", Theorem 4. 2, it is the hypergeometric function of Heckman and
Opdam. The latter statement follows from Shimeno®, Remark 3. 8. [J
3. 3 Induced equations

Put

Y, = %I(Xe;—e;n_XE:n—éj) S (1 = ] = 1’1-1)

The coefficient of Y; in HE is given by
1Y, EJEF = V= Xepre (Xt + Xy0) + 2 XKoo, + Xoejor) X s},
which is a non-zero constant multiple of
Xerreri( Xozet Xozeso) + (Koo, + Koesn) X-eimeson. (3.12)

It can be seen by direct computations that operator (3. 12) induces on B(G/P ; L...)
differential operator (2n+2—2s—7)Ee,.,-¢c,, Where Ee,.,_e, € a®*'~% is a non-zero root
vector. Indeed (3. 12) is equivalent to an element of U(ac+ng¢) modulo U(ge)(Es)c and
computations does not depend on /. Since ¢**'"%(1 < j < n—1) generate n(&)g, the
boundary value of solutions of (3. 6) and (3. 7) are contained in B(G/P: : ¢, s) for € =
! modulo 2 and Theorem 3. 1 follows. See Shimeno® for details.
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Remark 3. 6 We can generalize Theorem 3. 1 for all Hermitian symmetric spaces
of tube type. We will discuss this point in a forthcoming paper.
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