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Abstract

An axiomatic theory is developed on the multi-relaxation in crystalline solids.
Mathematically, it is a theory on a general linear ordinary differential equation of two
infinitely differentiable functions: here, the stress and strain. The differential equation
is, on the other hand, a defining equation of the general linear solid which represents
the multi-relaxation of strain after the applied stress. Properties found in the mathe-
matical theory are interpreted from a physical point of view, by putting emphasis on
natural correspondence between physico-mathematical properties.

1. Introduction

One of the important anelastic relaxations in solids is the point-defect relaxation®.
The point defects are classified into several types; the simplest are one, called a
vacancy, produced in a crystal by removing an atom, a substitutional by substituting
an atom of a different species, and an interstitial by bringing an extra atom either of
the same or a different species into an interstitial position between normal lattice sites.
In contrast to these elementaly point defects, there are composite defects made up with
a cluster of foreign, extra or missing atoms extending over a few of lattice sites. The
existence of the defect breaks the translational symmetry and may lower the original
crystalline symmetry belonging to the point group of the perfect crystal. The point-
group symmetry around the point defect is called the defect symmetry to distinguish
it from the site symmetry of the perfect crystal.

The anelastic relaxation is defined as a relaxation of the strain after the applied
stress. The defect symmetry lower than the site symmetry induces an anelastic
relaxation called the point-defect relaxation. Each species of the point defect may
cause an anelastic relaxation of different relaxation time. There appears a multi-
relaxation due to several kinds of point defects present in the crystal.

The defective crystal is considered homogeneous; that is, the point defects are
uniformly distributed all over the crystal. The applied stress, furthermore, is taken to
be homogeneous, so that the strain relaxation around the defect is a function of time,
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indifferent of the defect position. The stress and strain are, therefore, given as a
fuction of time only, independent of their position.

The purpose of the present paper is to develop a mathematical theory of the
multi-relaxation in crystalline solids, in comparison with the physical meaning of the
corresponding mathematical properties.

2. The General Linear Solid

Let € and ¢ be functions of time in class C™: the class of all infinitely differentiable
real fuctions, called the strain and stress, respectively. A solid is a continuous body
whose properties are specified by the stress-strain equation.

Definition 1 A solid is said to be elastic, if

€ = bo, (2.1)

with a positive real constant & called the compliance, usually written as Ju.

The stress-strain relation of eqn. (2.1) is the so-called “Hooke’s law”?®. The elastic
solid is represented by a mechanical model of the Hookean spring.

Definition 2 A solid satisfying the equation with a positive coefficient &,

& = boo (2-2)

is said to be Newtonian, whose mechanical model is the Newtonian dashpot. The
quantity of 1/ is a physical quantity called the viscosity, denoted by 7.

Definition 3 The Voigt solid is defined as a solid where the stress and strain follow
the equation:

Eé+aie = byo. 2.3)

Here, @, and &, belong to the set of all positive real numbers R*.
The constant 1/a; has the dimension of time, written as zs; i.e., 7o = 1/a1, which is
called the relaxation time.

3]R = l'o'bo = %‘: (2.4)

is the relaxation of the compliance. The stress-strain equation of the Voigt solid is,
then, given by

o1 _ Ok
é+—e=-_"0. (2.5)

Definition 4 The standard linear solid (abbreviated to SLS) is specified by the
differential stress-strain equation:

é+aie = b6+ bio (ay, bo, b € R*) 2.6)

or
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o1y Jutdlw l_( 1+A>
E+ Tae_]Ud+ w0 E+ 1,d;s—lu 6+ o O 2.7

with 7o = 1/a1, Ju = bo, 8Jr = b1/a1— by and the relaxation strength 4 = &Jx//u.

The differential stress-strain equation of the SLS is extended to a differential
general linear equation.

Definition 5 The general linear solid is defined as a solid following the differential
general linear equation:

'é—%) a:e" ) = g b:gt"? (af, b:€RY, a0 = 1), (2.8)

where €779, g"~? are (n—1) -fold time derivatives of the strain and stress.

3. Diffusion Operator
A differential operator D;

et d 1 1
D% Gt = det—gl G-D

is introduced with d dﬁ'#‘; and the identity operator I. The oprator D; is called the

diffusion operator which appears in the equation of diffusion of the density®. The
relaxation functions are C® functions: ¢; and ¢, defined as
eit+¢: =1, (3.2)
¢(t) = exp (—#/r&). (3.3)

Several propositions on the diffusion operator and the relaxation functions are sum-
marized without proof (see refs. 3 or 4).
Proposition 1
(1) D: is a linear operator of C* into C™.
(2) Di:=0.
1

(2’) Di¢i = D;l = F
_ (L LY,
@ D= (G~ e

@) Dip:= 7};7%4'#%
For f,g € C~,
@  Dyfo) = Dif +Dig—L;

T

@) D) = yDf 4

@) Diosf) = oDif +L.
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Definition 6

W @¥{D.=d+ir | reRUO )}, D¥I D.¥a.

(2) For VD, Dy, **+, D, €59, the composition of operators is defined as
(DeyoDx)f ' Di(Drf)
(11, 2x) (11 D2)eD.

@ el @l

Proposition 2 The composition satisfies the commutative and associative laws,
i e,
(1)  Dzx°Dy = DroDy,
(2)  (DxoDy)oDey = Dyyo(DypoDyy).
Hereafter, D°D, is simply written as D, D, and the identity operator I is omitted
unless required to emphasize this operator.
Proposition 3

) D,.Dn=d3+(1 >d¢+—
O

@ 11 Do = (1 Da)u= (10 Du )t (1T Do) L
—dr+(gL)ar+-+(H L) =3 (5 1 L)ar
i=1 T i=1 T; =0 \2:CQn je T
where £ is a subset of 7 elements of 2, = {1, 2,-, n}, called a subset of order i of Qs
the summation Qg, is made over all the subset of order i of £, and H means the
product over all the elements of 2, and, furthermore, 2« @, H 1 de' 1, E 1%

The kernel and image of the diffusion operator which is a lmear operator, are
further studied. For brevity, the kernel and image of the diffusion operator D; are
denoted by Ker D; and Im D;, respectively.

Proposition 4

(1) Ker D: =<¢> = {a¢ia = R}.

(2) <Ker D;UKer D;> = Ker D:®Ker D; = {a:p:i+ a;¢;|a:, a; € R}.

(3) Ker D:D; = Ker D;®Ker D;.

(4) Ker D=Ker D: (m =2).
Here, R is the set of all real numbers. The angle brackets <®) exhibits a linear
subspace of the linear space C” over R, generated from elements or a subset of C*®, and
L, ® L a direct sum of two linear subspaces L: and L. disjoint exeept for 0.

Definnition 7 Product or general diffusion operator of D;s(i =1,2,-, »n) is
defined as
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Proposition 5
Ker D = ;‘."l @®Ker D; = {g aipila: ER}.

Definition 8 Inverse oprator of D; is formally defined as

D ¥ o) 3 (—td.y, (3.4)
with (—8d:)° < 1.

The inverse operator is meaningless, if the sum of the infinite series in eqn. (3.4)
diverges on operation to a function of class C=. For instance,

D'y = o 5 (—cdd Y = o8 3 i = 194 31
diverges.
Proposition 6
(/Ji $ Im Di.

Proof .
Suppose that ¢: € Im D.. There exists a function f € C* such that ¢; = Df. Then,

Di'¢; = DiY(Df) = f,
which contradicts the divergence of D;'¢.. O
Corollary 1

Pi $ Im D..

Proof.

If ¢; € Im D, then ¢; = 1—p; € Im D;, which contradicts Prop. 6. O
From Prop. 1 (3), (3’) it follows that

Proposition 7 If r{” # ¢, then

¢i, ¢: € Im D;.

Proposition 8 If D;'f converges for f € C*, then D;'f € C* and f €Im D..
Proof.

For any positive integer e,
"D =% (—7—% )j "‘""f+(—~<—yl- )mDT‘f
t i - = z_dx t TO" ) y

whence if D;'f converges, then d7(D;'f) also converges. Thus, Di'f € C*. Since f =
Di(Di-lf)r f € Im D.. D
Proposition 9 Let m be any positive integer.

£,

—m _ ) e (_ oyl
(1) D;t = ngo( Tg)w
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f € m)_ ) < (m _ i m! m—f)
(2 D: (Eo ant” | = 16" 3 an jg)( o )sz—-—j)!t
. n [n-v . v
= 5 (5 (Va1
Since Di't™ € C™ and t™ = D« D;'t™), the following proposition is asserted.
Proposition 10 For any positive integer s,
Lttt t™ CIm D: (VD: €9), or {1, ¢, t3, t™ c‘DQDIm D.
Proposition 11
(1) Im .DiDj CIm Di.

4) ImD= élm D..

4. The Differential General Linear Equation (DGLE)
Let p(x) be a polynomial whose coefficients are a:s in eqn. (2.8):

p(x) = g ax"", 4.1)
and £ be the number of different roots of the equation:
p(x) = 0. (4.2)

The number £ is called the order of the general linear solid. Now, let —a;: be the roots
of eqn. (4.2). Then, the product diffusion operator D is given by

D= lljl (det+a:) = g a:di™. 4.3)

The left-hand side of eqn. (2.8) is, then, written as De. If a;: > 0(i = 1, 2,--, »), the
relaxation time 7§ is taken as 1/a; and the operator D is written as a product of the
n diffusion operators D;’s:

n

D=1 (d+25) =1 D. (4.4)
i=1 To i=1

The k different roots of eqn. (4.2) are now denoted by — @;(¢ = 1, 2,-++, k). The product

diffusion operator D corresponding to @:s is given by

D% M (s 29 2t y
= H t+a’i)=i§odidt . (4.5)

From Prop. 5, it follows that
Proposition 12
(1) Ker D =Ker D.
(2) dim (Ker D) = k.
It is anticipated that the strain of the GLS which is the solution of its defining DGLE
is written as
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E =

M=

Ei. (4~6)

=0

Here & is the elastic strain of the GLS, denoted by ee, and other &;'s are the anelastic
strains, usually denoted by &,,:, satisfying

Die: = aﬁf’%ﬁo (4.7)

By applying the product diffusion operator to eqn. (4.6) and combined with eqn. (4.7),
the following equation is attained.

e =Jo{D+ 45 11 D)o «8)

with €. = Juo and 4: = 8Jr,:/Ju. This equation is rearranged in another form

(B2 (m )l ]e=r[ B2 (m )0+ g a)tar]o wo

which is of the same form as eqn. (2.8). Then,

Y =P <.ien 71?) (4.10)
b= U{lx?m‘ (fent_}iir (1+ i< Aj>}' (4.11)

Now, consider a GLS of # = 2. The defining stress-strain equation is
DD = Jo| DD+ D+ 5 Difo
In the case of D; = D,, this equation becomes
Die = JoDi{ D+ A},
whence
Df-]u{Dﬁ%;éL}a € Ker D..

Proposition 13 In the case of D; = D; or ¥’ = 7§, the defining stress-strain
equation of the GLS for » = 2 reduces to
xE—]U{D+A +A}

Proof.
From Prop. 4 (1),
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Die— ]u{D,+ A'+A’}a =a¢; (a<R). (4.12)

Equation (4.7) asserts that

OJr.i é.
o= ;{(:f, o+ t(‘}’aelm D..

T 4; +A
d
The left-hand side of eqn. (4.12), then, belongs to Im D;, while ¢; & Im D; (Prop. 6).
Thus, the coefficient a should be equal to 0. O
A relaxation time yields a diffusion operator and vice versa. Proposition 13 further
implies that a relaxation time determines the Voigt solid except for the relaxation
strength or the relaxation of the compliance. By generalizing Prop. 13, it follows that
Theorem 1

e =1{D+ 3 45( 11 D))}s 4.13)

LJ#i

reduces to
- -k J ok
De=1{D+ 2 45{(, 11 D))o (4.14)

where D, is a diffusion operator and J; a relaxation strength or a sum of relaxation
strengths, associated with the relaxation time of 7§ = 1/a;.

Definition 9 The product diffusion operator D or the GLDE is said to be irreduc-
ible, if all the roots of equation p(x) = 0 are different one another, and reducible,
otherwise.

The Voigt solid is called the Voigt unit in the GLS. From Theorem 1 it is, according-
ly, impossible to separate the resultant relaxation of the compliance into the relaxa-
tions of the compliance for the individual Voigt units. Only the relaxations of the
compliance for different relaxation times are explicitly represented. In the theory of
the point-defect relaxation in crystalline solids, such case often occurs when there
involve point defects of a species and equivalent symmetries in the point group of the
defect symmetries. In such case the relaxations of the compliance are regarded to be
equal for each component Voigt unit, so that the relaxation of the compliance for each
component Voigt unit is dealt out in equal portion.

5. Solution of DGLE
Consider to solve the irreducible differential general linear equation defining the
GLS. From Theorem 1, the DGLE is given by

E ai e’ = 2 b " (ai, b: € R*, a0 = 1), ¢.1)

where a. and b; are employed instead of &, and b.. The different roots of eqn. (4.2) are
also written as —a:(i = 1, 2,--, k) without hat. Let a matrix A, be



Physico-Mathematical Consideration of the Multi-Relaxation in Solids 39

1 1 1
2 [« 2 @i, cer e 2 iy
f1#1 f1%2 i1k
Aa = 2 L Qi . Z L Qi@ e L. 2 L Al |,
f1,i2#1,01<i2 f1,82%#2,{1<12 1,82 k,1<i2
Q2Q3° " Ak aas Ak Qe Q-1

the determinant of which is the simplest alternating function of a:(i = 1, 2,--,k)?, i.e.,

|Aa| = ,H<, (a’i—d’j)

Since a/'s(i = 1,2,+, k) are different one another , the matrix A, is regular. Now by
setting

Ju=bo
4; = t§"(AZ'B):
8 = 1/

(B):= %:_ 19 (;‘Iela aj)’

eqn. (5.1) becomes eqn. (4.8).
Lemma 1

D{¢pi0) = #a & ¢ = constant

Proof .
From Prop. 1 (47),

D pi0) = ¢iDi0'+_%::‘g;.

Combined with the assumption,

p:D:0 = 7_%7%0‘.

Thus, dio = 0; that is, o is constant. The converse proposition is readily proved by
following the first part of the proof inversely. [
Theorem 2 If ¢ is constant, then

e=i(1+ & i) (5.2)

is a special solution of the irreducible DGLE (5.1). Combined with the general solution,
the solution of eqn. (5.1) is given by

€= fU<1+ 'gkl Ai¢i)0'+ gkl ap: (a: € R).

Proof.
By operating D on & of eqn. (5.2),
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n

De=Ju{D+ £ 4 11 D,~>D,-¢,~}a.

J=1,J#i
From Lemma 1, it follows that this equation becomes eqn. (4.8). The strain given by
eqn. (5.2) is, thus, a solution of the GLDE (5.1). Then,

k
e—]u(1+ gl Aitpf)o‘ € Ker D.
From Prop. 5,

E—fu(l+ 'gkl Ai@’i)o‘ = Ekl aip: (a: € R). ]

6. Mechanical Model of the GLS

The Voigt solid is modelled on the basis of the Hookean spring and the Newtonian
dashpot, by connecting the latter two models in parallel. This model of the Voigt solid
is represented by the same stress-strain equation as eqn. (2.5), so that the model is
identified with the Voigt solid. Attaching a Hookean spring to the Voigt model in
series yields a model specified by the same stress-strain equation as the standard linear
solid. The model of the SLS is extended to a model of the general linear solid, when
a Hookean spring and z Voigt models are connected all in series®. The model of the
GLS is evidently characterized by the differential stress-strain equation identical to the
defining differential equation of the GLS*.

7. Correspondence between Mathematical and Physical Properties of the GLS

The Voigt unit is a component of the GLS model. A relaxation time 75 is associated
with the Voigt unit, which is defined by the differential stress-strain equation as eqn.
(2.5). A Voigt unit of the GLS yields a diffusion operator specified by the relaxation
time of the Voigt unit; there is a one-to-one correspondence between a Voigt unit and
a diffusion operator through the relaxation time. Serial connection of the two Voigt
units in the GLS corresponds to the composition of the two corresponding diffusion
operators to the Voigt units.
7.1 Commutativity of Diffusion Operators

Two diffusion operators commutes each other for the composition of the two
operators (Prop. 2 (1)). Let the two diffusion operators be D; and D.. The composition
Do D is, in the GLS model, regarded as a serial connection of the corresponding two
Voigt units V; and V: in the order of the suffix number, for instance. In the general
linear solid, there produces no substantial difference in mechanical property even if the
order of connection of the two Voigt units is inverted. Such mechanical property in the
GLS reflects the commutativity of the diffusion operators.
7.2 Property of Ker D? = Ker D;

Two Voigt units V, and V: in the GLS are said to be equivalent, if their relaxation
times are the same. The units V, and V. are specified by the stress-strain equations:
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Diewi = Lsis (i=1,2) (7.1)
To
If V. is equivalent to Vo,
P = P E gD,
Thus, Dy = D, Dy,
and Dii2€anvz = %%Z—a (7.2)
with ConveE €aatenz , Orive ™ Orit ko

Equation (7.2) implies that two Voigt units of the same relaxation time is identical to
a Voigt unit of the same relaxation time with the relaxation of the compliance as large
as 8/r1+2 = 6J/ra+ 8/r2. Equivalent two Voigt units relax simultaneously in the GLS, so
that the two units is replaced with a Voigt unit of the same relaxation time though the
relaxation of the compliance is the sum of those for the component two units. Then,
the resultant Voigt unit of the two equivalent Voigt units is nothing but a Voigt unit
of the same relaxation time. In egns. (7.1) and (7.2), the left-hand side is always the
same, and so the general solutions of eqns. (7.1), (7.2) are the same as well. As for the
diffusion operator, composition of the same diffusion operators corresponding to the
connection of two equivalent Voigt units in the GLS, therefore, yields only a single
diffusion operator corresponding to the Voigt unit resulting from the two equivalent
Voigt units. It follows that Ker D? = Ker D;, and furthermore, Ker D = Ker D; (m
> 2).
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