Super-Primitive Ideals and Sharma Polynomials in Polynomial Rings

Ken-ichi Yoshida, Susumu Oda* and Junro Sato**

Department of Applied Math,
Okayama University of Science,
Ridai-cho 1-1, Okayama 700-0005, Japan
*Matsusaka Commercial High School
Toyohara, Matsusaka,
Mie 515-0205, Japan
**Osaka Junior College
Mihara, Minami-Kawachi,
Osaka 587-0022, Japan
(Received October 6, 1997)

Abstract

In [OSY], we investigated the following: Let R be a Noetherian integral domain, let R[X] be a polynomial ring and let K be the quotient field of R. Let α be an element of an algebraic field extension L of K and let $\pi: R[X] \to R[\alpha]$ denote the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Let $I_{[\alpha]} := \bigcap_{i=1}^d (R: R\eta_i)(=R[X]: R\varphi(X))$. For $f(X) \in R[X]$, let C(f(X)) denote the ideal generated by the coefficients of f(X). Put $J_{[\alpha]} := I_{[\alpha]}C(\varphi_{\alpha}(X))$, which is an ideal of R and contains $I_{[\alpha]}$. We say that the element α is an anti-integral element of degree d over R if $Ker \pi = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$. When α is an anti-integral element over R, $R[\alpha]$ is called an anti-integral extension of R. In the case $K(\alpha) = K$, an anti-integral element α is the same as an anti-integral element (i. e., $R = R[\alpha] \cap R[1/\alpha]$) defined in [OY]. The element α is called a super-primitive element of degree d over R if $J_{[\alpha]} \not\subset p$ for all primes p of depth one.

As was seen in the above, [OSY] concerned a simple extension with certain properties by use of the ideal Ker π . This paper deals with an ideal H of R[X] such that $P \cap R = (0)$ for all $P \in Ass_{R[X]}(R[X]/H)$ (i. e., exclusive) or a monic polynomial $\varphi(X)$ in K[X]. We define the super-primitiveness, anti-integralness and flatness of the ideal H or a polynomial $\varphi(X)$. If necessary, we can consider a simple ring-extension R[X]/H or $R[X]/(\varphi(X)K[X] \cap R[X])$. When H is a prime ideal or $\varphi(X) \in K[X]$ is an irreducible polynomial, we come back to the case treated in [OSY]. When H is not a prime ideal or $\varphi(X) \in K(X)$ is not an irreducible polynomial, we can extend the super-primitiveness, anti-integralness and flatness to a simple extension which is not necessarily an integral domain.

We use the following notation throughout this paper unless otherwise specified:

Let R be a Noetherian integral domain and R[X] a polynomial ring and let K is the quotient field of R. Let H be an ideal of R[X] and let $\varphi(X)$ be a monic polynomial in K[X].

Our unexplained technical terms are standard and are seen in [M1] and [M2].

1. Anti-Integral Ideals and Super-Primitive Ideals

Let R[X] be a polynomial ring over R and let H denote an ideal of R[X]. We say that H is an *exclusive* ideal if $P \cap R = (0)$ for every prime ideal $P \in Ass_{R(X)}(R[X]/H)$. When H is exclusive, $H_K := H \otimes_R K \subsetneq K[X]$. Since H_K is a principal ideal of K[X], we can write $H_K = \varphi_H(X)K[X]$ for some monic polynomial $\varphi_H(X) \in K[X]$. Let $d = \deg \varphi_H(X)$ and put $\varphi_H(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$ with $\eta_i \in K$. Let $I_H := \bigcap_{i=1}^d I_{\eta_i} (=R[X]_R \varphi_H(X))$. Then $I_H \varphi_H(X)R[X] \subseteq R[X]$. For $f(X) \in K[X]$, C(f(X)) denotes the content ideal of f(X), the fractional ideal of R generated by the coefficients of f(X).

Definition 1.1. Let H be an exclusive ideal of R[X].

- (1) The ideal H is an anti-integral ideal of R[X] or is of anti-integral type if $H = I_H \varphi_H(X) R[X]$.
- (2) The ideal H is a super-primitive ideal of R[X] or is of super-primitive type if grade $(I_HC(\varphi_H(X))) > 1$.

Remark 1. 2. Assume that the ideal H of R[X] is exclusive. Then $H_K \cap R[X] = H$. In particular, the inclusion $I_H \varphi_H(X) R[X] \subseteq H$ holds. Indeed, since $H_K \supseteq H$ asserts the inclusion $H \subseteq H_K \cap R[X]$. Conversely, take any $f(X) \in \varphi_H K[X] \cap R[X]$. Then $f(X) = \varphi_H(X) \zeta(X)$ for some $\zeta(X) \in K[X]$. Since $f(X) \in H_K$, there exists a non-zero $a \in R$ such that $af(X) \in H$. Since H is exclusive over R, we have that $a \notin P$ for each $P \in Ass_{R[X]}(R[X]/H)$. Thus $f(X) \in H$, which implies that $H \supseteq H_K \cap R[X]$.

Proposition 1. 3. Assume that H is an exclusive ideal of R[X]. If H is generated by some polynomials of the least degree, then H is anti-integral type.

Proof. Let d denote the least degree of a polynomial in H. Then $\varphi_H(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d (\eta_i \in K)$. Take $f(X) = a_0 X^d + a_1 X^{d-1} + \dots + a_d \in H$ with $a_i \in R$. Since $f(X) \in H$, we have $a_i/a_0 = \eta_i (1 \le i \le d)$. So $a_0 \in I_H$ and hence $f(X) = a_0 \varphi_H(X)$. Thus $H \subseteq I_H \varphi_H(X) R[X]$. Since $I_H \varphi_H(X) R[X] \subseteq H$ by Remark 1. 2, we have $H = I_H \varphi_H(X) R[X]$, which means that H is an anti-integral ideal. \square

Let $f(X) = a_0 X^n + a_1 X^{n-1} + \dots + a_n$ be a polynomial in R[X]. We say that f(X) is a *Sharma polynomial* in R[X] if there does not exist $t \in R$ with $t \notin a_0 R$ such that $ta_i \in a_0 R$ for $1 \le i \le n$.

We require the following result seen in [OSY]:

Lemma 1. 4. ([OSY,(1.2)]). Let f(X) be a polynomial in R[X]. Then f(X) is a Sharma polynomial if and only if $C(f(X)) \nsubseteq P$ for any $P \in Dp_1(R) := \{Q \in Spec(R) | depth_{RQ} = 1\}$.

Lemma 1. 5. (cf. [OSY, (1. 3)]). Assume that an ideal H is exclusive and that deg

 $\varphi_H(X) = d$. The following statements are equivalent:

- (i) H is a principle ideal of R[X];
- (ii) I_H is a principle ideal of R;
- (iii) there exists a Sharma polynomial in H of degree d.

If one of the above conditions holds, then H is generated by a Sharma polynomial.

Proof. (iii) \Rightarrow (i): Let f(X) be a Sharma polynomial in H of degree d. Since $\deg_{\mathcal{P}H}(X) = d$, this Sharma polynomial has the least degree. So by [S], H is principal.

(i) \Rightarrow (ii): Let H = f(X)R[X]. Then $f(X)R[X] \supseteq I_H\varphi_H(X)R[X]$. Note that $H \otimes_R K = f(X)K[X] = \varphi_H(X)K[X]$ and hence $\deg f(X) = \deg \varphi_H(X) = d$. Take $a \in I_H$. Then $a\varphi_H(X) = bf(X)$ for some $b \in R$. Let $f(X) = a_0X^d + \cdots + a_d$ with $a_i \in R$. Then $a = ba_0$, so that $I_H \supseteq a_0R$ for some $b \in R$. Since $ba_0\eta_i = a\eta_i = ba_i(1 \le i \le d)$, we have $a_0\eta_i = a_i \in R$. Hence $a_0 = I_H$, which implies that $I_H = a_0R$.

(ii) \Rightarrow (iii): Let $I_H = bR$. Then $I_H \varphi_H(X) R[X] = b \varphi_H(X) R[X] \subseteq H$ and $b \eta_i \in R(1 \le i \le d)$. Suppose that there exists $t \notin bR$ with $tb \eta_i \in bR(1 \le i \le d)$. Then $t\eta_i \in R$ and hence $t \in I_H = bR$, a contradiction. Thus $b \varphi_H(X) \in R[X]$ is a Sharma polynomial of degree d. \square

Proposition 1. 6. Assume that H is an exclusive ideal. If H is a super-primitive ideal of R[X], then H is an anti-integral ideal of R[X].

Proof. Since H is exclusive, $H \supseteq I_{H\varphi_H}(X)R[X]$ by Remark 1. 2. Take $f(X) \in H$. Then since $f(X) \in H_K$, there exists a non-zero element $a \in R$ such that $af(X) \in I_H\varphi_H(X)R[X]$. Take an arbitrary $p \in \mathrm{Dp}_1(R)$. Then $I_HC(\varphi_H(X)) \nsubseteq p$ because grade $(I_H\varphi_H(X)R[X]) > 1$. So there exists a Sharma polynomial in H_P of the least degree. By Lemma 1. 4, we have $H_P = g(X)R_P[X]$ for some $g(X) = b\varphi_H(X)$ with $b \in R$. Since $f(X) \in H_P$, there exists $c \in R \setminus p$ such that $cf(X) \in I_H\varphi_H(X)R[X]$. Thus $f(X) \in I_H\varphi_H(X)R[X]$. \square

Remark 1. 7. If H is a super-primitive ideal of R[X], then grade (C(H)) > 1. But the converse statement is not necessarily valid as is seen in the example below.

Example 1. 8. Consider an integral domain R satisfying the condition : $R \subseteq \overline{R}$, where \overline{R} denotes the integral closure. Take $\alpha \in \overline{R}$ but $\alpha \notin R$. Then we have an exact sequence :

$$0 \to H \to R[X] \to R[\alpha] \to 0$$
 (exact)

Note that H is a prime ideal of R[X]. In this case, H contains a monic polynomial (i, e., a polynomial giving an integral dependence of α). Hence C(H) = R. Suppose that H is a super-primitive ideal, then H is an anti-integral ideal by Proposition 1. 6. Since $H = I_{\varphi H(X)}^R \varphi_H(X) R[X]$, we have $I_{\varphi H(X)}^R C(\varphi_H(X)) = C(H) = R$. Thus α is flat over R (cf. [OSY, (2. 6)]). Since α is an integral flat element in K, $R[\alpha] = R$, that is, $\alpha \in R$, which is a contradiction. Therefore H is not a super-primitive ideal.

Theorem 1. 9. Assume that H is an exclusive ideal of R[X].

- (1) If H is of anti-integral type and grade (C(H)) > 1, then H is of super-primitive type.
 - (2) If H is of anti-integral type and H contains a Sharma polynomial, then H is of

super-primitive type.

Proof. Note that $H = I_H \varphi_H(X) R[X]$ by the assumption. Since $C(H) = I_H C(\varphi_H(X))$, (1) is valid. The statement (2) follows from Lemma 1. 4. \square

Let H be an exclusive ideal of R[X]. Define $J_H := I_H C(\varphi_H(X))$, an ideal of R. Proposition 1. 10. Let H be an exclusive ideal of R[X].

- (1) If $J_H = R$, then R[X]/H is flat over R.
- (2) If $J_H = R$, then H is of super-primitive type and I_H is an invertible ideal of R. Proof. (1) Take $p \in \operatorname{Spec}(R)$. Since $R = J_H = I_H C(\varphi_H(X))$, there exists $b \in I_H$ such that $(I_H)_P$ is a principal ideal bR_P . So $(I_H)_P = b\varphi_H(X)R_P[X]$. It follows that $R_P[X]/(I_H)_P = R_P[X]/b\varphi_H(X)R_P[X]$. Thus $R_P[X]/b\varphi_H(X)R_P[X]$ is flat over R_P by [M1, (20. F)] because $R_P = (J_H)_P = C(b\varphi_H(X))_P$. Hence R[X]/H is flat over R.
- (2) Since $R = I_H = I_H C(\varphi_H(X))$, I_H is an invertible ideal of R and H is a superprimitive ideal by definition. \square

Corollary 1. 10. 1. Let H be an exclusive ideal of R[X]. If $J_H = R$, then $H = I_H \varphi_H(X) R[X]$ and H is an invertible ideal of R[X]. Furthermore $H^{\ell}(\ell > 0)$ is also an invertible ideal of R[X].

Proof. By Proposition 1. 10 (2), H is of super-primitive type and hence H is of anti-integral type by Proposition 1. 6. So $H = I_H \varphi_H(X) R[X]$, which is an invertible ideal of R[X]. \square

Remark 1.11. Assume that H satisfies the condition in Corollary 12.1. Let $J := \{a \in R | a\varphi_H(X) \in R[X]\}$, an ideal of R. Then $H^{\ell} = J\varphi_H(X)^{\ell}$ R[X] and $J = (I_H)^{\ell}$.

2. Sharma Polynomials

In this section, we investigate how a Sharma polynomial works.

Proposition 2. 1. Let f(X) be a Sharma polynomial. Then f(X)R[X] does not have any embedded prime divisor.

Proof. Let P be a prime divisor of f(X)R[X]. Then depth $R(X)_p = 1$. Suppose that $p := P \cap R \neq (0)$. Then depth $R_p = 1$ and P = pR[X]. Thus $f(X) \in P = pR[X]$, which implies that $C(f(X)) \subseteq p$. Hence grade (C(f(X))) = 1. This contradicts the assumption that f(X) is a Sharma polynomial. So we have $P \cap R = (0)$. Since $P = P_K \cap R[X]$ and ht(P) = 1, f(X)R[X] has no embedded prime divisor. \square

Remark 2. 2. Let f(X) be a Sharma polynomial in R(X) and let P be a prime divisor of f(X)R[X]. It does not necessarily follow that P is of super-primitive type. But if P is of anti-integral type, then P is of super-primitive type. Indeed, consider the exact sequence :

$$0 \to P \to R[X] \to R[\alpha] \to 0$$
,

where α denotes $X \mod P$. In this case, since P contains a Sharma polynomial f(X), α is a super-primitive element over R by [OSY, (1.12)]. Next consider $R = \overline{R}$. If $P \cap R = (0)$, then P is of super-primitive type (cf. [OSY, (1.13)]).

Proposition 2. 3. Let $f(X) \in R[X]$ be a Sharma polynomial. Assume that f(X) is irreducible in K[X]. Then f(X)R[X] is a prime ideal in R[X].

Proof. Let P be a prime divisor of f(X) R[X]. Then $f(X) \in \varphi_P(X)K[X]$. Since f(X) is irreducible, there exists $a \in R$ such that $f(X) = a\varphi_P(X)(a \in P)$. Since grade (C(f(X))) > 1, P is of super-primitive type. So P is of anti-integral type by Proposition 1. 6 and hence $P = I_P \varphi_P(X) R[X]$. Thus f(X) R[X] = P. \square

Proposition 2. 4. Let f(X) be a Sharma polynomial in R[X]. Let P be a prime ideal in R[X] such that P is a unique prime divisor of the ideal f(X)R[X]. Then P is of super-primitive type.

Proof. By the assumption, $f(X)K[X] = \varphi_P(X)^\ell K[X]$. Since f(X) is a Sharma polynomial, we have $f(X)K[X] \cap R[X] = f(X)R[X]$ (cf. [S, Remark 5]). Hence $f(X)R[X] \subseteq (I_P\varphi_P(X))^\ell R[X]$. So since grade (C(f(X))) > 1, we have grade $(I_P\varphi_P(X)) > 1$. Hence P is of super-primitive type. \square

Lemma 2. 5. Let $\varphi(X) = X^d + \eta_1 X^{d-1} + \cdots \eta_d(\eta_i \in K)$ be a monic irreducible polynomial in K[X]. Put $I_{\varphi(X)}^R := \bigcap_{i=1}^d I_{\eta_i} (=R[X]:_R \varphi(X))$. If grade $(I_{\varphi(X)}^R C(\varphi(X))) > 1$, then $\varphi(X)K[X] \cap R[X] = I_{\varphi(X)}^R \varphi(X)R[X] \in \text{Spec }(R[X])$.

Proof. Since $\varphi(X)K[X] \in \text{Spec } (K[X])$, we have $P := \varphi(X)K[X] \cap R[X] \in \text{Spec } (R[X])$. By construction, $P \supseteq I_{\varphi(X)}^R[X]$. By the assumption,

grade
$$(I_{\varphi(X)}^R C(\varphi(X))) > 1$$
.

Thus P is of super-primitive type. So we obtain $P = I_{\varphi(X)}^R \varphi(X) R[X] \in \operatorname{Spec}(R[X])$.

Theorem 2. 6. Let f(X) be a Sharma polynomial in R[X] and let $f(X) = a\varphi_1(X)^{e_1}$ $\cdots \varphi_t(X)^{e_t}$ be a products of irreducible polynomials $\varphi_i(X) \in K[X]$ and $a \in R$. Then $f(X)R[X] = (\varphi_1(X)^{e_1} K[X] \cap R[X]) \cap \cdots \cap (\varphi_t(X)^{e_t} K[X] \cap R[X])$ is a primary decomposition.

Proof. Since f(X) is a Sharma polynomial, we have $f(X)R[X] = f(X)K[X] \cap R[X] = \varphi_1(X)^{e_1} \cdots \varphi_t(X)^{e_t} K[X] \cap R[X] = (\varphi_1(X)^{e_1} K[X] \cap \cdots \cap (\varphi_t(X)^{e_t} K[X]) \cap R[X] = (\varphi_1(X)^{e_1} K[X] \cap R[X]) \cap \cdots \cap (\varphi_t(X)^{e_t} K[X] \cap R[X])$. Since $f(X) \in \varphi_t(X)K[X] \cap R[X]$, the prime ideal $\varphi_t(X)K[X] \cap R[X]$ is of super-primitive type. So $\varphi_t(X)K[X] \cap R[X] = I_{\varphi_t(X)}^R R[X]$ by Lemma 2. 5. Thus we see that $\varphi_t(X)^{e_t} K[X] \cap R[X]$ is an $I_{\varphi_t(X)}^R R[X]$ -primary ideal. \square

Proposition 2. 7. Let $I \subseteq J$ be ideals of R[X]. Assume that $I \otimes_R K = J \otimes_R K$ and that for each $p \in Dp_1(R)$, JR_p contains a Sharma polynomial over R_p of the least degree. Then I = J.

Proof. Take $f(X) \in I$. Then $f(X) \in I \subseteq I \otimes_R K = J \otimes_R K$. Hence there exists $a \in R$ such that $af(X) \in J$. Let p be a prime divisor of aR. Then $p \in \mathrm{Dp}_1(R)$. By the assumption, $J_p = g(X)R_p[X]$, $C(g(X)) = R_p$ for some $g(X) \in J$. Put $f(X) = g(X)\zeta(X)$ with $\zeta(X) \in R_p[X]$. Then there exists $b \in R \setminus p$ such that $bf(X) \in J$. Since a, b is a regular sequence, we have $f(X) \in J$. \square

3. Super-Primitive Polynomials and Sharma Polynomials

Definition 3. 1. Let $\varphi(X)$ be a monic polynomial in K[X] and let $I_{\varphi(X)}^R := R[X] : {}_R \varphi(X)$. The polynomial $\varphi(X)$ is called a *super-primitive polynomial* if grade

 $(I_{\varphi}^R C(\varphi(X))) > 1.$

Let \overline{R} denote the integral closure of R in K and let $C(\overline{R}/R)$ denote the conductor ideal between R and \overline{R} . For an element $\eta \in K$, we put $I_{\eta} := \{a \in R | a\eta \in R\}$.

Remark 3. 2. Assume that $R \subseteq \overline{R}$.

- (1) There exists a polynomial in K[X] which is not super-primitive. In fact, take $\eta \in \overline{R} \backslash R$ and let $\varphi(X) := X \eta$. Then $\varphi(X)$ is not super-primitive (cf. Example 3. 9. below).
- (2) When $\eta \in K$ satisfies grade $(I_{\eta} + C(\overline{R}/R)) > 1$, the polynomial $X \eta$ is superprimitive. More generally, let $\varphi(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d(\eta_i \in K)$ satisfy grade $(I_{\eta_i} + C(\overline{R}/R)) > 1$ for all i. Then grade $(\bigcap_{i=1}^d I_{\eta_i} + C(\overline{R}/R)) = \text{grade } (I_{\varphi(X)}^R + C(\overline{R}/R)) > 1$. Then $\varphi(X)$ is super-primitive (cf. Proposition 3. 10).

Proposition 3. 3. Let B be an ideal of R. Assume that every prime divisor of B is contained in $Dp_1(R)$. Let a, b be a regular sequence and $f \in R$. If af, $bf \in B$, then $f \in B$.

Proof. Consider a primary decomposition of B:

$$B = q_1 \cap \cdots \cap q_n$$

where $\sqrt{q_i} = p_i$. Then $p_i \in \mathrm{Dp_l}(R)$ for all $1 \le i \le n$. Take p_i . Then a, b is an R-regular sequence. So $a \notin p_i$ or $b \notin p_i$. If $a \notin p_i$, then $f \in q_i R_{p_i} \cap R = q_i$. A similar argument is applicable to the case $b \notin p_i$. Hence we conclude that $f \in B$. \square

Proposition 3. 4. Let $\varphi(X) \in K[x]$ be an irreducible super-primitive polynomial. Let $I := I_{\varphi(X)}^R$ and $J := I_{\varphi(X)}^R(\ell > 0)$. Then $I\varphi(X)R[X]$ is a prime ideal of R[X] and $J\varphi(X)^\ell R[X]$ is $I\varphi(X)R[X]$ -primary ideal.

Proof. Since $\varphi(X)^{\ell}K[X]$ is $\varphi(X)K[X]$ -primary, the ideal $\varphi(X)^{\ell}K[X] \cap R[X]$ is $\varphi(X)K[X] \cap R[X]$ -primary. Since $\varphi(X)$ is super-primitive and hence anti-integral. So $\varphi(X)K[X] \cap R[X] = I\varphi(X)R[X]$. Thus we have only to prove that $\varphi(X)^{\ell}K[X] \cap R[X] = J\varphi(X)^{\ell}R[X]$. The implication (⊇) is obvious. We shall show that the implication (⊆) holds. Since J is a denominator ideal in R, J is a divisorial ideal. So $JR[X](\subseteq R[X])$ is also a divisorial ideal. Hence $J\varphi(X)^{\ell}R[X](\subseteq R[X])$ is a divisorial ideal. Thus any prime divisor of $J\varphi(X)^{\ell}R[X]$ is of depth one. Take $f(X) \in \varphi(X)^{\ell}K[X] \cap R[X]$. Then $f(X)/\varphi(X)^{\ell} \in K[X]$. We must show that $f(X)/\varphi(X)^{\ell} \in JR[X]$. Let p be any prime divisor of p. Then $p \in Dp_1(R)$. In this case, we have to show $f(X)/\varphi(X)^{\ell} \in (JR[X])_p$. Since $(I\varphi(X))^{\ell}R[X] \subseteq J_{\varphi}(X)^{\ell}R[X]$, we have grade $(JC(\varphi(X)^{\ell})) > 1$. Hence $J_p = aR_p$ for some $a \in J$. Put $g(X) = a\varphi(X)^{\ell}$. Then $g(X) \in J$ and $C(g(X))R_p = R_p$, which shows $f(X) \in g(X)R_p[X]$. Thus $f(X)/\varphi(X)^{\ell} \in (g(X/\varphi(X)^{\ell})R_p[X] = aR_p[X] = (JR[X])_p$. From this, we get $\varphi(X)^{\ell}K[X] \cap R[X] = J\varphi^{\ell}R[X]$. By Lemma 2. 5, $I\varphi(X)R[X] \in Spec(R[X])$. Therefore we have $J\varphi(X)^{\ell}R[X]$ is an $I\varphi(X)$ -primary ideal. □

Theorem 3. 5. Let $\varphi_1(X), \dots, \varphi_t(X) \in K[X]$ be irreducible super-primitive polynomials. Let $I_i := I_{\varphi_t(X)}^R(1 \le i \le t)$ and let $J_i := I_{\varphi_t(X)}^R(1 \le i \le t, e_i > 0)$. Then

$$\varphi_1(X)^{e_1}\cdots \varphi_t(X)^{e^t} K[X]\cap R[X]=igcap_{i=1}^t (J_i\varphi_i(X)^{e^t} R[X])$$

and this is a primary decomposition of the left side ideal, where $J_i\varphi_i(X)^{e^i}$ R[X] is an $I_i\varphi_i(X)R(X)$ -primary ideal for each $1 \le i \le t$.

Proof. It follows that $\varphi_1(X)^{e_1} \cdots \varphi_t(X)^{e_t} K[X] \cap R[X] = (\varphi_1(X)^{e_1} K[X] \cap \cdots \cap \varphi_t(X)^{e_t} K[X]) \cap R[X] = (\varphi_1(X)^{e_1} K[X] \cap R[X]) \cap \cdots \cap (\varphi_t(X)^{e_t} K[X] \cap R[X] \cap R[X]) = J_1\varphi_1(X)^{e_1} R[X] \cap \cdots \cap J_t\varphi_t(X)^{e_t} R[X]$ by Proposition 1. 6. By Proposition 3. 4, $J_i\varphi_i(X)^{e_t} R[X]$ is an $I_i\varphi_i(X)R[X]$ -primary ideal for each $1 \leq i \leq t$. \square

Proposition 3. 6. Let $\varphi_1(X), \dots, \varphi_t(X) \in K[X]$ be irreducible super-primitive polynomials. Then $\varphi_1(X)^{e_1} \dots \varphi_t(X)^{e_t} K[X] \cap R[X]$ is a prinicipal ideal at each $P \in Dp_1(R)$.

Proof. Let $J:=R[X]: {}_R\varphi_1(X)^{e_1}\cdots \varphi_t(X)^{e_t}$ and let $I_i:=R[X]: {}_R\varphi_i(X)$. Since $\varphi_i(X)$ is a super-primitive polynomial, we have grade $(I_iC(\varphi_i(X)))>1$ for each $1\leq i\leq t$. Note that $(I_1)^{e_i}\cdots (I_t)^{e_t}\subseteq J$, which yields

grade
$$(JC(\varphi_1(X)^{e_1}\cdots\varphi_t(X)^{e_t}))>1$$
.

Take $p \in \mathrm{Dp}_1(R)$. There exists $f_i(X) \in I_i \varphi_i(X)$ such that $C(f_i(X)) \nsubseteq p$ for $1 \le i \le t$. Put $f(X) := f_1(X)^{e_1} \cdots f_t(X)^{e_t}$. Then $C(f_i(X)) \nsubseteq p$. Since $f(X) \in \varphi_1(X)^{e_1} \cdots \varphi_t(X)^{e_t} K[X] \cap R[X]$ and f(X) has the least degree, it follows that $(\varphi_1(X)^{e_1} \cdots \varphi_t(X)^{e_t} K[X] \cap R[X])_p = f(X)R[X]_p$ by [S, Remark 5]. \square

Remark 3. 7. Let $\varphi(X) \in K[X]$ be a monic polynomial and let $I := I_{\varphi(X)}^R$. If $I\varphi(X)R[X]$ contains a Sharma polynomial, then $\varphi(X)$ is a super-primitive polynomial. Indeed, take a Sharma polynomial $f(X) \in I\varphi(X)R[X]$. Suppose there exists $p \in \mathrm{Dp}_1(R)$ such that $IC(\varphi(X)) \subseteq p$. Then $I\varphi(X)R[X] \subseteq pR[X]$ and hence $f(X) \in pR[X]$. Thus $C(f(X)) \subseteq p$, which contradicts the assumption that f(X) is a Sharma polynomial.

Proposition 3. 8. Let $\varphi(X) \in K[X]$ be a monic polynomial. Then $\varphi(X)$ is a super-primitive polynomial if and only if $I_{\varphi(X)}^R \varphi(X)R[X]$ contains a Sharma polynomial. Proof. The implication (\Leftarrow) follows from Remark 3. 7.

 (\Rightarrow) Take a non-zero element $a \in I^p_{\ell(X)}$ and put $f_1(X) = a\varphi(X)$. Let $p_1, \dots, p_n \in \mathrm{Dp}_1(R)$ such that $p_i \supseteq C(f_1(X))$. Since $\varphi(X)$ is a super-primitive polynomial, we have $I^p_{\ell(X)}$ $C(\varphi(X)) \not = p_1, \dots, p_n$. There exists $g_i(X) \in I^p_{\ell(X)}$ $\varphi(X)R[X]$ such that $C(g_i(X)) \not = p_i(1 \le i \le n)$. Put $f(X) = f_1(X)g_i(X) \dots g_n(X)$. In this case, $C(f(X)) \subseteq C(f_1(X))$, $C(g_i(X))(1 \le i \le n)$. Thus for each $p \in \mathrm{Dp}_1(R)$, $C(f(X)) \not = p$. Hence f(X) is a Sharma polynomial and $f(X) \in I^p_{\ell(X)}$ $\varphi(X)R[X]$. \square

The following example shows that an irreducible factor $\varphi(X)$ in K[X] of a Sharma polynomial f(X) is not always a super-primitive polynomial.

Example 3. 9. Assume that $R \subseteq \overline{R}$. Take $\alpha \in \overline{R} \setminus R$. Since α is integral over R, there exists a monic polynomial f(X) in R[X] such that $f(\alpha) = 0$. Note that C(f(X)) = R because f(X) is monic. Thus f(X) is a Sharma polynomial. It is obvious that $X - \alpha$ is a factor of f(X) in K[X]. Suppose $X - \alpha$ is anti-integral. Then $f(X) \in X$

 $-\alpha)K[X] \cap R[X] = I_{\alpha}(X-\alpha)R[X]$. So $R = C(f(X)) \subseteq I_{\alpha}C(X-\alpha)$, which means that $R[\alpha] \cong R[X]/(X-\alpha)$ is flat over R (cf. [OSY, (2. 6)]). Since α is integral over R, we have $R[\alpha] = R$, that is, $\alpha \in R$, which is a contradiction. Therefore the polynomial $X-\alpha$ is not an anti-integral polynomial, and hence $X-\alpha$ is not a super-primitive polynomial.

Proposition 3. 10. Let $\varphi(X)$ be a monic polynomial in K[X].

- (1) If grade $(I_{\varphi(X)}^R + C(\overline{R}/R)) > 1$, then grade $(I_{\varphi(X)}^R C(\varphi(X))) > 1$.
- (2) grade $(I_{\varphi(X)}^R C(\varphi(X))) > 1$ if and only if $I_{\varphi(X)}^R \varphi(X) R[X]$ contains a Sharma polynomial.
 - (3) If $R = \overline{R}$, then grade $(I_{\varphi(X)}^R C(\varphi(X))) > 1$.
- *Proof.* (1) Take $p \in \operatorname{Dp}_1(R)$. If $I_{\varphi(X)}^R \nsubseteq p$, then $I_{\varphi(X)}^R \subseteq I_{\varphi(X)}^R C(\varphi(X))$. So $I_{\varphi(X)}^R \nsubseteq p$. On the other hand, if $I_{\varphi(X)}^R \subseteq p$, then $C(\overline{R}/R) \nsubseteq p$ by the assumption and hence R_p is a DVR. Let $v_p(\cdot)$ denote the valuation of R_p . If $v_p(I_{\varphi(X)}^R) = e$, then $(I_{\varphi(X)}^R)_p = p^e R_p$ and there exists i such that $V_p(\eta_i) = -e > 0$, where $\varphi(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$ with $\eta_i \in K$. Thus $v_p(I_{\varphi(X)}^R \eta_i) = 0$. Hence $(I_{\varphi(X)}^R \eta_i)_p \nsubseteq p R_p$. Thus $(I_{\varphi(X)}^R C(\varphi(X)))_p \nsubseteq p R_p$. This show that $I_{\varphi(X)}^R C(\varphi(X)) \nsubseteq p$. Therefore we obtain that grade $(I_{\varphi(X)}^R C(\varphi(X))) > 1$.
- (2) (\Rightarrow) : Take $a \in I_{\varphi(X)}^R$ and put $f(X) = a\varphi(X)$. If f(X) is a Sharma polynomial, then there is nothing to prove. Suppose that f(X) is not a Sharma polynomial. Then there exists a prime ideal p in $\mathrm{Dp}_1(R)$ such that $C(f(X)) \subseteq p$. Take a non-zero element $b \in C(f(X))$. Then p is a prime divisor of the ideal bR because $p \in \mathrm{Dp}_1(R)$. Since the number of prime divisors of bR is finite, the number of prime ideals in $\mathrm{Dp}_1(R)$ containing C(f(X)) is also finite. Let p_1, \cdots, p_n be the prime ideals containing C(f(X)). Since $I_{\varphi(X)}^R(C(\varphi(X)) \nsubseteq p_i$ for all $1 \le i \le n$ by the assumption, there exists $g_i(X) \in I_{\varphi(X)}^R(X)$ such that $g_i(X) \notin p_iR[X]$ for each $1 \le i \le n$. Put $g(X) := f(X) + X^d g_1(X) + \cdots + X^{nd} g_n(X)$. Then $C(g(X)) = \sum_{i=1}^n (C(g_i(x)) + C(f(X)) \nsubseteq p$ for all $p \in \mathrm{Dp}_1(R)$. Thus g(X) is a Sharma polynomial.
- (2) (\Leftarrow): Let f(X) be a Sharma polynomial in $I_{\varphi(X)}^R \varphi(X) R[X]$. Then we can express $f(X) = \sum f_i(X) g_i(X)$ with $f(X) \in I_{\varphi(X)}^R \varphi(X)$ and $g_i(X) \in R[X]$. Suppose that there exists $p \in \mathrm{Dp}_1(R)$ such that $I_{\varphi(X)}^R C(\varphi(X)) \subseteq p$. Then $f_i(X) \in pR[X]$ and hence $f(X) \in pR[X]$, which contradicts the assumption that f(X) is a Sharma polynomial.
 - (3) follows from $C(\overline{R}/R) = R$ and (1). \square

In the above Proposition 3.10, the converse implication of (1) does not always valid as is seen in following example.

Example 3. 11. Let k be a field and let t be an indeterminate. Let $R:=k[t^2,\,t^3]$. Then $\overline{R}=k[t]$. Let $\varphi(X):=X^2+X+1/t^2\in K[X]:=k(t)[X]$. Then $I_{\varphi(X)}^R=t^2R$ and $I_{\varphi(X)}^RC(\varphi(X))=t^2(1,\,1/t^2)R=R$. So we have $\operatorname{grade}(I_{\varphi(X)}^RC(\varphi(X)))=\operatorname{grade}(R)>1$, but $\operatorname{grade}(I_{\varphi(X)}^R+C(\overline{R}/R))=\operatorname{grade}(t^2R+tR)=\operatorname{grade}(tR)=1$.

Remark 3. 12. Consider a Noetherian domain R satisfying $R \subseteq \overline{R}$ and let $\varphi(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d \in K[X]$. Assume that every $\eta_i \in \overline{R}$ and that $\eta_j \notin R$ for some j. Then $I_{\varphi(X)}^R \varphi(X) R[X]$ does not cotain any Sharma polynomial.

References

- [M1] H. Matsumura: Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
- [M2] H. Matsumura: Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
- [OSY] S. Oda, J. Sato and K. Yoshida: High degree anti-integral extensions of Noetherian domains, Osaka J. Math., 30 (1993), 119-135.
- [OY] S. Oda and K. Yoshida: Anti-integral extensions of Noetherian domains, Kobe J. Math., 5 (1988), 43-56.
- [S] P. Sharma: A note on ideals in polynomial rings, Arch. Math., 37 (1981), 325-329.