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In this paper, we propose an auto-tuning method of the membership functions of
simplified fuzzy inference rules. The parameters of membership functions are
optimized by method of steepest descent. The method was applied to the water

filtration control system.

1. INTRODUCTION

Fuzzy logic control is currently a popular technique for engaging human expertise
in process control applications. A fuzzy logic control strategy attempts to synthesize
the linguistic control protocol of skilled human operators in a real-world environment.
However, a fuzzy controller based directly on operator-specified or common sense
rules often exhibits poor performance characteristics. This problem arises because the
initial rules are often crude and have to be refined to achieve better performance.

Auto-tuning is a method which refines the fuzzy control policy by adjusting various
controller parameters based on a set of performance measures. The important part of
auto-tuning is adapting the membership functions. Refining the control policy by
directly modifying the membership functions was studied in [8-11] .

In [8-9] H. Ichihashi introduce simplified fuzzy reasoning. The consequent parts of
the simplified fuzzy reasoning are expressed by real values. In [8-9] the tuning of the
consequent parts of the inference rules by method of steepest descent was proposed.
This method was extended in [11] and the parameters of both antecedent and conse-
quent parts of the simplified fuzzy reasoning were tuned at the same time. The
membership functions of the antecedent parts in [11] were defined as equilateral
triangles.

We extend methods of [9], [11] and allow use of membership functions of the
arbitrary triangular and trapezoidal shapes. Based on an expert’s selected training set,
the parameters of both antecedent and consequent parts of the simplified fuzzy
reasoning are tuned by method of steepest descent.
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2. SIMPLIFIED FUZZY REASONING AND MEMBERSHIP FUNCTIONS
FROM C°
When input of the fuzzy control system is defined as xi, ..., x» and output is y, the
7 -th rule of the simplified fuzzy reasoning is the following expression

If x1is Aa and ... xn is Am then y is wi; (7 = 1... )

where 7 is rule’s number, A, ..., A:» are membership functions and w; is the real value
of the consequent part.
The output y of the simplified fuzzy reasoning is calculated as below
Zl it Wi
y = e (1) Hi — 11(961) Azz(xz) zm(xm) (2)
2, i

Fuzzy membership functions can have different shapes, depending on the designer’s
preference or experience. In practice fuzzy engineers have found that triangular and
trapezoidal shapes simplify computation and help capture the modeler’s sense of fuzzy
numbers.

Let us consider the membership functions of the arbitrary triangular and trapezoidal
shapes. A triangular membership function A, is set (Fig. 1) by parameters aj, pi, qi;
(g >0, ¢ > 0). A trapezoidal membership function A; can be given (Fig.2) by
parameters a., qi; Oor by, pi;, or can be given (Fig. 3) by parameters ay;, by, qij, pis (qis
>0, piy > 0).

Trapezoidal membership functions from Fig. 2 are basic functions. All other
membership functions of C° can be expressed by means of them. Let’s denote member-
ship functions from Fig. 2 as A.#%(x;) and B:?'?(x;). Then we have

a, N — ].Xj_aij_qz‘jl_|Xj—'aijl _L b,p
Az_; q(x;) - 2'(]{;’ + 2 and Bu (x;)
_ ’xj—bij+pij1_|xj-bz'j| +_1‘
2'1‘){;’ 2

For the triangular membership function A; (Fig. 1) we have

Au(xs) = Af9(x;) + B (x;) — 1 (3)
— in ai; — qlJ, [x; aul lx; au+pu| ' — Qi
SO Ai(x +
J( J) 2 qu 2 pu
ST~ /—‘ /—’\

- p; G a; +q; az’j a+qy b, —Py b ay; a'HIg

Triangular membership Trapezoidal membershlp Trapezo:.dal membership:

function. functions. function.
Fig. 1 Triangular memb- Fig. 2 Trapezoidal membership Fig. 3 Trapezoidal memb-

ership function. functions. ership function.
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For the trapezoidal membership function A, (Fig. 3) we have

Au(s) = Ad9(x) + Bi? (x;) — 1 )
) = s — ay— gqul —x;— au %= byt Pyl = 12— by
so Auyx) = e * 2+ s

3. AUTO-TUNING ALGORITHM

The parameters of the membership functions and the real values of the consequent
parts are tuned automatically by the method of steepest descent based on an expert’s
selected input-output data.

Let xf ..., x5 v(/ =1, ..., k) is the training set i.e. selected input-output data. Then
k
E = % 1211 (y—vY?% expresses the error of the fuzzy control, where y is the actual value

of the fuzzy control and y'’ is the desired value. Minimizing £ we find the optimal
values of the parameters. The problem of minimizing the sum of squared errors is a
classical one. We minimize performance function E by the steepest descent procedure.

Denote f(z, ..., 2,) as f(Z). Then the steepest descent method for minimizing f
governed by the following equation

Z(t+1) = z2(t)—a-VSf 530 (5)

)

in which z(t) is the “old” value of Z; Z(t+1) is the “new” value of Z;V/f is the
gradient of f and coefficient @ is a real number.

To simplify the calculation we use (5) to minimize % (v—y"2% For the parameter of

the consequent part w: we get from (5) following tuning rule

wit+1) = wi(t) — Co-(y—y")» —

which is the same asin [9] , [11] . For the parameters of the trapezoidal membership
function A:#%(x;) we get from (5) following tuning rules

ao(t+1) = ap() = Car(y =y, )+ B, SERT— au) sEnlr—du=gu)

q;(t+1) = q;;(t) = Cq-(y— ") (w:i—y)- By

\xj— al-jl — \xj-— aij— qu| — Qij'Sgn<xj_ ai;— 4:‘1)
2‘01'3'

and for the parameters of the trapezoidal membership function B.?(x;) we have

bult+1) = ()= Cor (v =)~ (10— v)- By SERG=bu) ZsEnleimbut pi)

pii(t+1) = pi(t)— Co(y—y)-(wi—y)+ Bi*
|x,~— bij‘ - |Xj_ bi;+ pul+ pirsgnl(a;— b+ pu)
2+ pik




124 V. Lachkhia

where B, = ﬁ; A,-q(xé)-(ﬁ}1 1)t and Cu, Cq, Cs, Cp, Cq are the coefficients represent-

g+;
ing a in (5). For the parameters of the triangular (Fig. 1) and trapezoidal (Fig. 3)
membership functions tuning rules can by easily calculated using (3), (4), (6) and (7).

The considered membership functions are from the class C°. Therefore in the points
where the partial derivatives do not exist we redefine them to equal 0. The result of
the minimization of E considerably depends on the values of the coefficients Cu, Co,
Cs, Cp, Cq and the initial values of the tuning parameters.

There are an unlimited number of ways in which @ in (5) can be selected. The case
in which @ becomes infinitesimal is very often in use. This avoids oscillating around the
extreme and gives the convergent of the algorithm.

Another choice for a is “best-step steepest descent”. Because of the computations
involved in evaluating the gradient of f(Z) at a given point, it is usually advantageous
to make the most of each gradient computation before making another; that is, to
search in the direction of the gradient until

0f (Z(t)—a Vflz=3w) /0a =0

The choice of the initial values of the parameters is an important one. We can use
preliminary optimization techniques to find a good starting point. The “global” search
methods as the nonsequential methods, or the pattern and the directed array search

[13] can be used for this purpose. Another reasonable choice for the initial values are
the expert defined membership functions.

A brief plan of the algorithm is as follow

Step 1. Set initial values of the tuning parameters

Step 2. Input training data xi, ..., x» and using (1), (2) calculate y

Step 3. Using tuning rules and the values of y and y‘ calculate the new values of the

tuning parameters.

Step 4. Repeat step 2 and step 3 until the change of £ becomes less then e.

The described method can tune not only the parameters of the membership func-
tions, but based only on the training set this method can also define set of the rules of
the fuzzy control lake in [11] . But to get high performance it is probably necessary
to use special algorithms for the rules tuning. In this paper we consider only tuning of
the parameters of the membership functions. After obtaining the appropriate set of
rules the described method can be useful for tuning membership functions.

4. APPLICATION TO THE WATER FILTRATION CONTROL SYSTEM

To demonstrate the usefulness of the method we use the above tuning algorithm for
the fuzzy system which controls water purification process in water filtration plants.
This fuzzy control system was developed in [7]. We use the same expert’s defined
inference rules and training set.

The control system for water purification described in [7] has 7 input variables.
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There are TU1, ALK, TEMP, TUSE, FLOC, TUUP and STAT. The output of the
fuzzy system is called DDOS. For detail consideration see [7]. The following inference
rules were defined by the expert:

if TUL is ST then DDOS is PM;

if TUL is MM and TUSE is IL and TEMP is IS then DDOS is NM;

if TU1 is SA and ALK is LA and TEMP is SA then DDOS is PM;

if ALK is SA and TU1 is LA then DDOS is NM; (8)
if TUSE is LA then DDOS is PM; if TUUP is LA then DDOS is PB;

if TUUP is ML then DDOS is PM; if TUUP is MM then DDOS is PS;

if FLOC is SA then DDOS is PM; if STAT is LA then DDOS is PS;

where SA means small, MM means medium, LA means large, IL means inverse small,
ML means medium large, PM means positive medium, NM means negative medium,
PB means positive big, PS means positive small and ST means smaller than.

Table 1 (column TU1, ALK, TEMP, TUSE, FLOC, TUUP, STAT, DDOS) shows
the expert’s selected input-output data. The membership functions in [7] were chosen
to make the error on the training set small. The compositional rule of fuzzy inference
was used for the fuzzy output calculations in [7]. The membership functions defined
in [7] are shown in Fig. 4 and Fig. 6. Fig. 4 describes the membership functions of the
antecedent parts and Fig. 6 describes the membership functions of the consequent
parts. Table 1 shows the error of the fuzzy control for the training data. The error was
calculated as the difference between the actual value of the fuzzy control y and desired
value v‘. The sum of the absolute values of the errors on the training set of the fuzzy
control system defined in [7] is equal to 19.8.

Note that in some cases changes to the membership functions may not appreciably
improve the control process. This is because the content of the rules is very important.
Changes to the controller rules affects the control process more then changes to the
membership functions. Therefore it is very important to choose the appropriate set of
rules.

The set of rules in [7] is not so carefully chosen. Suppose that TUUP is MM and
FLOC is SA. Then from the 8-th rule it follows that DDOS is PS, but the 9-th rule
shows that DDOS is PM. So there are some contradictions in the rules of [7].

Despite the shortcomings of the rules we use the same 10 rules to turn the parame-
ters of the membership functions. Our purpose is to minimize errors on the training set
by tuning parameters of the membership functions.

The starting point is important for the steepest descent method. The initial values
of the parameters of the antecedent parts in our algorithm were defined as in [7].
Thus membership functions of the antecedent parts described in [7] were chosen as
the starting point. The real value of the consequent part w,(7 = 1, ..., 10) was chosen
to yield a maximum of the fuzzy membership function of DDOS described in i-th rule
of (4). This is a reasonable starting point for iterative optimization. The values of the

coefficients in the tuning rules ware taken as infinitesimal.
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Table 1 Training set and errors of fuzzy control

TUI | ALK | TEMP | TUSE | TUUP | FLOC | STAT | DDOs | Error of fuzzy Error after

control in [1] tuning
5.0 | 13.7 | 11.5 | 0.4 0.0 | 0.5 1.0 1.7 —0.7 —0.9
50 | 13.7 | 11.5 | 0.5 0.0 | 0.5 | 0.0 1.8 ~1.3 —0.6
50 | 13.9 | 11.6 | 0.5 0.0 | 05 | 0.0 1.8 —1.2 —0.3
5.0 | 13.7 | 11.7 | 0.4 0.0 | 0.5 | 0.0 1.8 ~1.1 —0.4
6.0 | 13.4 | 11.7 | 0.5 | 0.0 | 0.5 0.0 1.6 —0.4 —0.0
19.0 | 14.2 | 11.0 | 0.4 0.3 | 0.3 1.0 | 0.5 0.5 0.0
28.0 | 13.8 | 10.7 0.7 0.5 0.3 | 0.0 0.2 —0.3 —0.2
32.0 | 13.8 | 10.5 | 0.9 1.0 | 0.3 0.0 4.7 1.3 1.0
33.0 | 13.8 | 10.5 | 0.9 1.0 | 0.3 0.0 4.7 0.2 0.0
33.0 | 13.8 | 10.6 | 0.9 1.0 | 0.3 0.0 4.6 —0.1 —0.3
26.0 | 13.2 | 10.0 | 0.9 1.0 | 0.3 1.0 4.5 0.4 —0.7
24.0 | 13.2 9.7 | 0.7 | 0.8 | 0.8 0.0 2.6 0.3 —0.2
23.0 | 13.2 9.6 | 1.1 0.8 | 0.8 0.0 2.7 0.6 0.1
22.0 | 13.1 9.6 | 1.5 | 0.8 | 0.8 0.0 2.8 0.4 0.0
21.0 | 13.3 9.6 | 1.3 0.0 0.8 0.0 1.2 -1.1 -1.5
19.0 | 13.0 9.3 | 1.1 0.0 | 0.5 1.0 1.1 1.9 0.0
18.0 | 13.0 9.0 | 2.3 | 0.0 | 0.5 0.0 1.3 0.2 0.4
17.0 | 13.0 9.0 | 1.4 0.0 0.5 0.0 1.3 -1.2 —1.4
17.0 | 12.9 9.0 | 1.0 0.0 | 0.5 0.0 1.0 0.9 0.1
16.0 | 12.8 9.1 | 1.1 0.0 | 0.5 0.0 1.1 1.0 0.1
13.0 | 12.7 9.1 | 0.8 | 0.0 0.5 1.0 1.2 0.0 —0.1
12.0 | 12.8 9.1 | 1.4 0.0 0.5 0.0 1.3 0.7 0.7
1.0 | 12.8 9.3 | 1.4 0.0 0.5 0.0 1.3 0.5 0.6
11.0 | 12.8 9.6 | 1.3 | 0.0 0.5 0.0 1.2 0.4 0.4
10.0 | 13.0 9.8 | 1.1 0.0 0.5 0.0 1.2 0.1 0.0
9.0 | 12.8 9.5 | 0.7 | 0.0 0.5 1.0 1.2 0.5 —0.2
9.0 | 13.0 9.2 | 1.1 0.0 0.5 0.0 1.3 0.4 0.4
12.0 | 13.0 9.0 | 0.9 | 0.5 0.5 0.0 1.3 0.6 0.2
13.0 | 13.4 8.8 | 0.9 | 0.0 0.3 0.0 1.3 —0.3 0.0
15.0 | 13.3 8.7 | 0.7 | 0.0 0.3 0.0 1.2 0.4 0.4

30 30

"Z:II ly—y' = 19.8 "ZJI ly—y =128

The results of the tuning (more then ten thousand steps) of the membership functions
of the antecedent parts are shown in Fig. 5. The tuned values of the consequent parts
are

u, = 245, U = —4.39,7/03 = 880, Wy — _4.07,1,05 = 2.50,
We = 11.02,?,{}7 == 568, Ws = 085, g — 390, Wi = 0.00

After tuning, the sum of the absolute values of the errors became equal to 12.8 (Table
1). The values of the partial derivatives in tuning rules were near zero but not still
equal to zero. So the procedure can be still continued and errors can be reduced.

CONCLUSION

We propose a self-tuning method for the fuzzy membership functions from class C°.
Membership functions from class C*, (/=1) can also be tuned in the same way. The
algorithm uses the expert’s defined input-output data to determine the values of the
parameters of the membership functions. After obtaining the appropriate set of rules
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Fig. 4 Membership functions of the
antecedent parts in [7].

Fig. 5 Membership functions
after tuning.

NM PS PM PB
| | |
-9.0 -40 -20 -1.0 10 20 40 60 90 100 16.0
DDOS

Fig. 6 Membership functions of the
consequent parts.

and training data this method can be useful for tuning membership functions. Tuned
membership functions considerably improve the performance. This research extends
and enhances tuning algorithm developed by Ichihashi and Nomura. The water
purification control system is used to demonstrate the algorithm.
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