Finitely Generated Ring-Extensions of Anti-Integral Type

Ken-ichi Yoshida, Susumu Oda* and Junro Sato**

Department of Applied Math.

Okayama University of Science
Ridai-cho, Okayama 700 Japan

*Matsusaka Commercial High School
Toyohara, Matsusaka, Mie 515-02 Japan

**Osaka Junior College

Mihara, Minami-kawachi, Osaka 587 Japan

(Received October 7, 1996)

Let R be a Noetherian domais with quotient field K. We say that an element $\beta \in K$ is a *flat element* over R if $R[\beta]$ is flat over R (see [4]). In [4], it was shown that if β_1 , ..., $\beta_n \in K$ are all flat elements then $R[\beta_1, ..., \beta_n]$ is flat over R. Example 17 in [4] shows that this assertion does not always hold if $\beta_i \notin K$ for some i, that is, the assertion above is not necessarily valid in the non-birational case.

In this paper, we treat the case that some of β_1, \ldots, β_n are not contained in K and show that the similar assertion holds even in the non-birational case if β_1, \ldots, β_n satisfy certain conditions.

Let A be an integral domain containing R. Assume that A and L are in some large fixed field. Let K(A) denote the quotient field of A. Let L be an algebraic field extension of K and $\alpha \in L$. Let $\pi^{(A)}:A[X] \longrightarrow A[\alpha]$ be the canonical A-algebra homomorphism sending X to α . Let $\varphi_{\alpha}^{(A)}(X)$ denotes the minimal polynomial of α over K(A) and let deg $\varphi_{\alpha}^{(A)}(X)$ denotes the minimal polynomial of α over K(A) and let deg $\varphi_{\alpha}^{(A)}(X) = d_A$. Write

$$\varphi_a^{(A)}(X) = X^{dA} + \eta_1 X^{dA-1} + \ldots + \eta_{dA}$$

 $(\eta_i \in K(A))$. Let $I_{\eta_i}^{(A)} := A:_{A\eta_i}$ and let $I_{[a]}^{(A)} := \bigcap_{i=1}^{d_A} I_{\eta_i}^{(A)}$. If A = R, we put $d: = d_A$, $I_{\eta_i} := I_{\eta_i}^{(A)}$ and $I_{[a]} := I_{[a]}^{(A)}$. It is easy to see that $I_{[a]}(\text{resp. } I_{[a]}^{(A)})$ is an ideal of R (resp. A).

An element $\alpha \in L$ is called an *anti-integral element* over R of degree d if the equality $\ker \pi = I_{[\alpha]}\varphi_\alpha(X)R[X]$, holds. For a polynomial $f(X) \in R[X]$, C(f(X)) denotes the ideal of R generated by the coefficients of f(X). Let J be a of R[X], we denote by C(J) the ideal of R generated by the coefficients of the polynomials in J. If $\alpha \in L$ is anti-integral, it follows that $C(\ker \pi) = C(I_{[\alpha]}\varphi_\alpha(X)R[X]) = I_{[\alpha]}(1, \eta_1, ..., \eta_d)$. We put $J_{[\alpha]} := I_{[\alpha]}(1, \eta_1, ..., \eta_d)$, which is an ideal of R. Similarly let $J_{[\alpha]}^{(A)} := I_{[\alpha]}^{[A]}(1, \eta_1, ..., \eta_d)$. When α is an element in K, $\varphi_\alpha(X) = X - \alpha$. So we have $J_{[\alpha]} := I_{[\alpha]}(1, \eta_1, ..., \eta_d) = I_{[\alpha]}(1, \eta_1, ..., \eta_d) = I_{[\alpha]}(1, \eta_1, ..., \eta_d)$.

It is knows that if α is anti-integral and integral over R of degree d, then $R[\alpha]$ is a free R-module of rank d (cf. [3]).

Throughout this paper, we use the above notation unless otherwise specified.

§1. Several Properties of the Ideal $J_{[\alpha]}$

We start with the following definition.

Definition 1.1. Assume that $\alpha \in L$ is anti-integral and integral over R of degree d. For an element $\beta \in K(\alpha) = K[\alpha]$, putting : $\beta = g_0 + g_{1\alpha} + ... + g_{d-1}\alpha^{d-1}$ with $g_i \in K$, let

$$T_{\beta}:=\bigcap_{i=0}^{d-1}I_{Si}=R[\alpha]:{}_{R}\beta.$$

Lemma 1.2. Assume that $a \in L$ is anti-integral over A of degree d_A . Put

$$F_l^{(A)} := \{ f(X) \in \text{Ker} \pi^{(A)} | \text{deg} f(X) = \ell \}$$

for a non-negative integer ℓ , where $\pi^{(A)}: A[X] \longrightarrow A[\alpha]$ is the canonical A-algebra homomorphism sending X to α . If $\ell \geq d_A := [K(A)(\alpha):K(A)]$ then $C(F_\ell) = J^{\{A\}}_{\{\alpha\}}$.

Proof. Since α is an anti-integral element of degree d_A over A, we have

$$\operatorname{Ker} \pi^{(A)} = I_{[a]}^{(A)} \varphi_a^{(A)}(X) A[X],$$

and hence

$$J_{[a]}^{(A)} = C(\operatorname{Ker} \pi^{(A)}) = C(I_{[a]}^{(A)} \varphi_a^{(A)}(X) A[X]).$$

Take $f(X) \in I_{(a)}^{(A)} \varphi_{\alpha}^{(A)}(X) A[X]$ with deg $f(X) = d_A$. For an integer $\ell \geq d_A$, we see that $X^{\ell-d_A} f(X) \in F_{\ell}^{(A)}$. Thus $C(f(X)) = C(X^{\ell-d_A} f(X)) = C(f(X)) \subseteq C(F_{\ell}^{(A)})$. So we obtain that $I_{(a)}^{(A)} \subseteq C(F_{\ell}^{(A)})$. Conversely, take $f(X) \in F_{\ell}^{(A)}$. Then $f(X) \in \operatorname{Ker} \pi^{(A)} = I_{(a)}^{(A)} \varphi_{\alpha}^{(A)}(X) A[X]$. Hence we can write:

$$f(X) = \sum f_i(X)g_i(X),$$

with $\deg f_i(X) = d_A$, $f_i(\alpha) = 0$. From this, we have $C(f(X)) \subseteq \sum C(f_i(X))A \subseteq J_{\{\alpha\}}^{\{A\}}$. Thus $C(F_i^{\{A\}}) \subseteq J_{\{\alpha\}}^{\{A\}}$. So we conclude that $J_{\{\alpha\}}^{\{A\}} = C(F_i^{\{A\}})$. Q.E.D.

Lemma 1.3. Let $\beta \in L$ be an anti-integral element over R and let A be an Noetherian domain containing R. If β is an anti-integral element over A of degree $e (\leq d)$, then $J_{[\beta]}A \subseteq J_{[\beta]}^{(A)}$.

Proof. Take $f(X) \in I_{[\theta] \varphi \beta}(X) R[X]$ with $\deg f(X) = d$. Consider the natural exact sequence:

$$0 \longrightarrow \operatorname{Ker} \pi^{\scriptscriptstyle{(A)}} \longrightarrow A[X] \xrightarrow{\pi^{\scriptscriptstyle{(A)}}} A[\beta] \longrightarrow 0.$$

Then $f(X) \in \ker \pi^{(A)}$. So by Lemma 1. 2, we have $C(f(X)) \subseteq C(F_d^{(A)}) = J_{[\beta]}^{(A)}$, which

yields that $J_{[\beta]}A \subseteq J_{[\beta]}^{(A)}$. Q. E. D.

Making these preparations, we have the following proposition.

Proposition 1.4. Assume that $\alpha \in L$ is an anti-integral element over R of degree d. Let $\beta \in K[\alpha]$. Assume that β is anti-integral over both R and $R[\alpha]$. If $R[\beta]$ is flat R then $R[\alpha, \beta]$ is flat over $R[\alpha]$.

Proof. Put $A = R[\alpha]$. By [3, Proposition 2.6], we have $J_{[\beta]} = R$. Hence $J_{[\beta]}^{(A)} = A$ by Lemma 1.3. Using [3, Proposition 2.6] again, we have that $A[\beta]$ is flat over A. Hence $R[\alpha, \beta]$ is flat over $R[\alpha]$. Q.E.D.

Remark 1.5. In [2], it is shown that $\alpha \in L$ is anti-integral over R if and only if so is α^{-1} .

§2. Flat Elements

In this section, we show when $\beta \in L$ is flat over $R[\alpha]$ in terms of the ideal T_{β} . For this purpose, we study some properties of the ideal T_{β} .

Proposition 2.1. Assume that $\alpha \in L$ is anti-integral and integral over R of degree d. Then the following statements holds:

- (i) For $\beta_1,...,\beta_n \in K[\alpha]$, put $A = R[\alpha, \beta_1,...,\beta_n]$. If $(T_{\beta_1} \cap ... \cap T_{\beta_n})A = A$ then A is flat over R.
- (ii) For $\beta \in K[\alpha]$, the equality $I_{[\beta]}^{(R[\alpha])} \cap R = T_{\beta}$ holds and hence $T_{\beta}R[\alpha] \subseteq I_{[\beta]}^{(R[\alpha])}$.

Proof. (i) By the definitions of T_{β} and $I_{[\beta]}^{(R[\alpha])}$, we have $T_{\beta} \subseteq I_{[\beta]}^{(R[\alpha])}$. So the assumption yields $T_{\beta i}A = A(1 \le i \le n)$. Thus we have $I_{[\beta i]}^{(R[\alpha])}A = A(1 \le i \le n)$. From this, it follows that $(I_{[\beta i]}^{(R[\alpha])} \cap ... \cap I_{[\beta n]}^{(R[\alpha])})A = A$, and hence A is flat over R (cf. [4]). Since R [α] is flat over R, A is flat over R.

(ii) Note that $\beta \in K(\alpha)$. Since $I_{[\beta]}^{(R[\alpha])} = R[\alpha]$: $_{R[\alpha]}\beta$ and $T_{\beta} = R[\alpha]$: $_{R}\beta$, we have $I_{[\beta]}^{(R[\alpha])} \cap R = T_{\beta}$. From this, it follows that $T_{\beta}R[\alpha] \subseteq I_{[\beta]}^{(R[\alpha])}$. Q. E. D.

Remark 2.2. (i) For $\beta \in K[\alpha]$, the rings $R[\alpha]$ and $R[\alpha][\beta]$ are birational. So it holds that $I_{(\beta-1)}^{(R[\alpha])} = \beta I_{(\beta)}^{(R[\alpha])}$.

(ii) By use of (i), we have the following:

$$\begin{split} J^{(R[\alpha])}_{(\beta)} &= I^{(R[\alpha])}_{(\beta)} + \beta I^{(R[\alpha])}_{(\beta)} \\ &= I^{(R[\alpha])}_{(\beta)} + I^{(R[\alpha])}_{(\beta^{-1})} \\ & \supseteq (T_{\beta} + T_{\beta-1}) R[\alpha] \end{split}$$

and

$$J_{[\alpha]}^{(R[\alpha])} \cap R \supseteq T_{\beta} + T_{\beta-1}$$
.

The next theorem is our main result in this section.

Theorem 2.3. Assume that α is anti-integral and integral over R of degree d. Let β_1 , ..., β_n be elements in $K[\alpha]$. If $J_{[\beta i]} = R$ and each β_i is anti-integral over both R and $R[\alpha](1 \le i \le n)$, then $R[\alpha, \beta_1, ..., \beta_n]$ is flat over R.

Proof. Since $\beta_1, ..., \beta_n \in K[\alpha]$, $A: = R[\alpha, \beta_1, ..., \beta_n]$ is birational over $R[\alpha]$. By Proposition 1.4, each $\beta_i (1 \le i \le n)$ is a flat element over $R[\alpha]$. Thus A is flat over $R[\alpha]$ (cf. [4]). Since $R[\alpha]$ is flat over R by the assumption, A is flat over R. Q.E.D.

Proposition 2.4. Assume that α is anti-integral and integral over R. Let $\beta_1, ..., \beta_n \in K[\alpha]$. If $(T_{\beta_i} + T_{\beta_{i-1}})R[\alpha] = R[\alpha]$ for each i, then $R[\alpha, \beta_1, ..., \beta_n]$ is flat over R.

Proof. By using of Remark 2.2, we have $J_{\beta i}^{(R[\alpha])} \supseteq (T_{\beta i} + T_{\beta i^{-1}})R[\alpha] = R[\alpha]$ for each i because $R[\alpha]$ is faithfully flat over R. So $J_{\beta i}^{(R[\alpha])} = R[\alpha]$. Thus each β_i is a flat element over $R[\alpha]$. Since $\beta_i \in K(\alpha)$, $R[\alpha, \beta_1, ..., \beta_n]$ is flat over $R[\alpha]$ (cf. [4]). Hence $R[\alpha, \beta_1, ..., \beta_n]$ is flat over $R[\alpha]$.

In the preceding results, the condition that β is anti-integral over $R[\alpha]$ works effectively. We attempt to characterize this condition in terms of the ideal T_{β} .

Let $\mathrm{Dp_1}(R):=\{p\in\mathrm{Spec}(R)|\mathrm{depth}R_p=1\}$. Let α be an element in an algebraic field extension L of K. We say that α is a *super-primitive element* of degree d if $J_{[\alpha]}\not\subseteq p$ for all $\in\mathrm{Dp_1}(R)$. Let A be a Noetherian domain containing R. An element $\beta\in K[\alpha]$ is a super-primitive element over A if and only if grade $(J_{[\beta]}^{(A)})>1$. It is known in [3] that the super-primitive elements are anti-integral.

Proposition 2.5. Assume that α is anti-integral and integral over R of degree d. Let β be an element in $K[\alpha]$.

- (i) β is super-primitive over $R[\alpha]$ if grade $(T_{\beta} + T_{\beta-1}) > 1$. In particular, if grade $(T_{\beta} + T_{\beta-1}) > 1$, then β is anti-integral over $R[\alpha]$.
- (ii) β is a flat element over $R[\alpha]$ if $T_{\beta} + T_{\beta-1} = R$.

Proof. (i) Since $R[\alpha]$ is faithfully flat and integral over R, grade $(T_{\beta} + T_{\beta-1}) > 1 \Longrightarrow \operatorname{grade}(J_{[\beta]}^{(R[\alpha])} \cap R) > 1 \Longrightarrow \operatorname{grade}(J_{[\beta]}^{(R[\alpha])}) > 1$. Our conclusion follows.

(ii) Since β is a flat element over $R[\alpha]$, we have $J_{\beta}^{(R[\alpha])} = R[\alpha]$ and hence $J_{\beta}^{(R[\alpha])} \cap R = R$. So we have $T_{\beta} + T_{\beta-1} = R$ by the same way as in (i) Hence we have $J_{\beta}^{(R[\alpha])} = R$ [α]. Q.E.D

Proposition 2.6. Assume that α is anti-integral and integral over R of degree d. Let $\beta \in K[\alpha]$ which is anti-integral over both R and $R[\alpha]$. Then $\sqrt{I_{[\beta]}} = \sqrt{I_{\beta}^{(R[\alpha])}} \cap R$.

Proof. First we shall show the inclusion $I_{[\beta]} \subseteq I_{[\beta]}^{(R[a])} \cap R$. Let $\varphi_{\beta}(X) = X^d + \wp_1 X^{d-1} + \ldots + \wp_d$ with $\wp_i \in K$. Then for a non-zero element $\wp_i \in I_{[\beta]}$, there exists an algebraic dependence: $\wp_i \in I_{[\beta]}$ dependence: $\wp_i \in$

§3. Unramified Extensions

In this section, we discuss certain relationships between flat extensions and unramified extensions. Let β be an anti-integral element K. Then the module of differentials $\Omega_{R[\beta]/R}$ of $R[\beta]$ over R is given by

$$\Omega_{R[\beta]/R}=R[\beta]/I_{[\beta]\varphi'\beta}(\beta)R[\beta].$$
 Since $\varphi_{\beta}(X)=X-\beta(\beta\in K)$, we have $I_{[\beta]\varphi'\beta}(\beta)=I_{[\beta]}$. Thus

$$R[\beta]$$
 is unramified over $R \Longleftrightarrow \Omega_{R[\beta]R} = (0)$
 $\iff I_{[\beta]}R[\beta] = R[\beta]$
 $\iff R[\beta]$ is flat over R

(See [1] for detail). This means that in the birational case, the flatness is equivalent to the unramifiedness. But in the non-birational case, there exists an counter-example to this assertion an follows:

Example. Let $\beta \in L$ satisfy $\beta^d = a \in R$ and $a \notin R^x$ with $[K(\beta):K] = d$ for d > 1. Then $\varphi_{\beta}(X) = X^d - a$ and $\varphi'_{\beta}(\beta) = d \beta^{d-1} \notin R[\beta]^x$. Thus $R[\beta]$ is integral and hence flat over R by [3] but not unramified over R.

Theorem 3.1. Assume that α is anti-integral and integral over R of degree d. Let $\beta \in K[\alpha]$ and assume that β is anti-integral over both R and $R[\alpha]$.

- (i) $R[\beta]$ is flat over R if and only if $R[\alpha, \beta]$ is unramified over $R[\alpha]$.
- (ii) If $R[\beta]$ is unramified over R then $R[\beta]$ is flat over R.

Proof. (i) By Proposition 1.4, $R[\beta]$ is flat over R if and only if $R[\alpha, \beta]$ is flat over $R[\alpha]$. Since $\beta \in K[\alpha]$, that is, $R[\alpha, \beta]$ and $R[\alpha]$ are birational, we have the equivalence: $R[\alpha, \beta]$ is flat over $R[\alpha]$ if and only if $R[\alpha, \beta]$ is unramified over $R[\alpha]$.

(ii) Assume that $R[\beta]$ is unranified over R. Then the set $\{f'(X)|f(X) \in I_{\{\beta\} \varphi \beta}(X)R \in X\}$ generates the unit ideal in $R[\beta]$. Since $f(\beta) = 0$ and β is anti-integral over $R[\alpha]$, we have $f(X) \in I_{[\beta]}^{(R[\alpha])} \varphi_{\beta}^{(R[\alpha])}(X) R[\alpha][X]$, where $\varphi_{\beta}^{(R[\alpha])}(X)$ denotes the monic minimal polynomial of β over $K(\alpha)$. Hence

$$f(X) = \sum F_i(X) G_i(X), F_i(X) \in I_{[\beta]}^{(R[\alpha])} \varphi_{\beta}^{(R[\alpha])}(X) R[\alpha][X],$$

where $G_i(X) \in R[\alpha][X]$, $\deg F_i(X) = 1$. Noting that $F_i(X) \in I_{[\beta]}^{(R[\alpha])}$, we have $f'(\beta) = \sum F_i'(\beta) G_i(\beta) \in I_{[\beta]}^{(R[\alpha])} R[\alpha, \beta)$. Thus since $I_{[\beta]}^{(R[\alpha])} R[\alpha, \beta] = R[\alpha, \beta]$, $R[\alpha, \beta]$ is flat over $R[\alpha]$. So by Proposition 1.4, we conclude that $R[\beta]$ is flat over R. Q.E.D.

Theorem 3.1. yields the following corollary.

Corollary 3.2. Under the same assumption in Theorem 3.1, if $R[\beta]$ is unramified over R then $R[\alpha, \beta]$ is unramified over $R[\alpha]$.

References

- 1) M. Kanemitsu and K. Yoshida: Anti-integral extensions and unramified extensions, Math. J. of Okayama Univ., 36, 51-62 (1994).
- 2) M. Kanemitsu and K. Yoshida:Some properties of extdnsions $R[\alpha] \cap R[\alpha^{-1}]$ over Noetherian domain R, to appear in Comm. in Algebra.
- 3) S. Oda, J. Sato and K. Yoshida: High degree anti-integral extensions of Noetherian domains, Osaka J. Math., 30, 119-135 (1993).
- 4) J. Sato:Denominator ideals and the extensions of Noetherian domains, Kobe J. Math., 9, 107-113 (1992).