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1 Introduction

This paper is a continuation of our paper?. Here we consider the two families of
Hecke algebras of certain finite affine transformation groups. We shall prove that
those Hecke algebras are commutative. We shall also determine both the multiplica-
tion tables and the character tables with respect to the canonical basis of our Hecke
algebras explicitly.

2 The first example
Let Z be the ring of integers and N be the set of natural numbers. Fix a prime p and
ne€ N. Let Z/p" be the ring of integers mod. p" and(Z/p")* be the multiplicative group
of Z/p". Note that |Z/p"| = p* and |(Z/p™)*| = ¢(p*) = p" ' (p—1), where ¢ is Euler’s
function. Consider the (Z/p™)* orbits in Z/p". It is easy to see that the orbit decomposi-
tion of Z/p" is given by
n—1
Zjp" = {0tV U (ZJp")*- p* (1)
where
(Z[p")*-p* = {up*;u € (Z[p"*)}0 < k < n—1). (2)
The isotropy subgroup of (Z/p™)* at p* is given by
(Z/p") e = {1+ bp" *;b € Zfp*}. (3)
We define a multiplication rule on the direct product G = (Z/p")*x Z/p" by
(a, b)(d, b) = (ad, b+ ab’). (4)

Then G becomes a finite group of order p**~'(p—1), whose unit element is (1, 0) and
the inverse of (a, b) is (™!, —a'b). Put H = {(y,0); y € (Z/p")*} and N = {(1,x); x €
Z[/p"}. Then H is a subgroup of G isomorphic to (Z/p")* and N is a normal subgroup
of G isomorphic to Z/p". Since
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(v, x) =1, x)(y,0) = (y,0(, y '), (5)

we have G = NH = HN. Let G/H be the coset space of G with respect to H. Then it
follows from (5) that G/H = {(1, x)H; x € Z/p"}. Let H\G/H be the double coset space
of G with respect to H. Then it follows from (5) that

H(y,x)H=HQ,x)H = HQ, ax)H, a< (Z/p™)*.
Consequently we conclude from (1) that

H\G/H ={H,D., = H(1, p")H(0 < k < n—1)} (6)
and from (2)

Di=H,p)VH= U (1 up")VHO<k<n—1). (7)

ue(z/pn-k)x

Hence the number of H-cosets in D is equal to ¢(p" %) = p" *'(p—1). Let 'H be the
Hecke algebra of G with respect to H. It is a subalgebra of the group algebra CG
defined by ‘H = eCGe, where e € CG is given by

e=IHSh=p(")" 3 (a0 ®)

aes(z/pnyx

Define ex € H(0 < k£ < n—1) by

Er = ‘H|_1 > g.
geDy
It is known?® that
e = (" e, pFe(0 < k< n—-1), (9)

and {e, €.(0 < £ < n—1)} forms a basis of H. Since —1 = p"—1¢€ (Z/p")*, it follows
that Di' = H(1, —p*)H = H(1, p*) H = D«. Therefore H is a commutative algebra®.

Theorem 1. The Hecke algebra A is an (#+ 1)-dimensional commutative semisimple
algebra, whose multiplication table is given by

e?=c,een=en(0<m<n-1) (10
ciEn =" Me0< ] < m< n-1) 1
en = fp(ﬁn_m)(e+mﬂg‘.sn_l&j)+1>""""(Z)—2)em(0 <wm<n-—1). 12

Proof. It is enough to show (1) and (12. From (9), we have
cien = (" D e(d" ™ e(l, phe(, pMe.
Using (8), we have

(1, pHe@, p™) = e(p") ™" 2 (a, p'Q+ap™")).

ae(z/pn)x

Since m > [ and 1+ap™ '€ (Z/p™)*, it follows that
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(a, p'(1+ap™ ") = (1+ap™ ", 0)(1, pYa(l+ap™ 9, 0)

and hence

e(l,phed, pMe = o(p") _Z e(lphe
= e(1, phe.
Consequently we have
cen =" Me for 0< 1< m<n-1.

It follows from (8), (9)

en = e(p" ™%, pMe(l, pMe

= e e(p) B e p"(1+a))e.
Note that
1+ (25 = (0 U (210 5 U (1 +(Z0™)) 1 (Z0"))
and

((L+(Z/p")) N (Z[p™)*| = p"(p—2).
The sum 3ecwemx (1, p"(1+a))e is given by

e+ X 2 el p"*u)e+ = e(l, p™v)e,

Isk=n—~1 ue(z/pn-r)x VE(L+(z/pM)X)N (2/ pn)X

which equals
et 2 0" el p" e+ p (p=2)e(l, p"e.

Since p™** = 0 for n—m < k < n—1, it can be written as

I+ B e e X pre* el ple+p"(p—2)e(1, p")e.

n—-msksn m+lsjsn-1
Since the coefficient of e is p™, the above sum is equal to

pre+p" X lej+p”"l(p~2)co(p"‘"’)'lem.

m+lsjsn—
Applying ¢(p" ")?0(p") ™" = o(p"~")/p", we have

en=e("M(e+ T e)+p U p—2em /

m+lsjsn—1
From Theorem 1, we conclude that all the irreducible representations are 1-
dimensional and there are exactly (n+1) irreducible characters of .
Theorem 2. Let H be the set of all irreducible characters of H. Then

H= L0 <k < n—1))
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where

1(e) = LL(en) = @(p™™™)
and

2e(e) =1, xulen) = 000 < m < k—1), xulex) = —p"*7,
xe(em) = o™ k+1 < m < n—1).

Proof. Let y be an irreducible character of H and put x(en) = An(0 < m < n—1).
Since €21 = ¢(p)e+ (p—2)en-1, we have A2_1 = @(p) +(p—2)Ar-1 and hence A,-1 = —1
or ¢(p). Since emen1 = @(p)en(0 < m < n—2) and &2 = p(p)(e+en)+p(p—2)
€n_z, we conclude that An = 0(0 < m < n—2) if As-s = —1 and A2 = — p or @(p°) if
An1 = @(p). Therefore if x(en,_1) = —1 then ¥ = xn_1. Assume A,—1 = ¢(p) and A, =
— 5. Then emen—z = ¢(p?)en(0 < m < n—3) implies An = 0(0 < m < n—3). Therefore
if x(en-1) = @(p) and x(en-2) = —p then x = xn-2. Assume A1 = @(p) and A2 = ¢
(p?). Then 2.3 = p(p°)(e+ en—a+en-1) +*(p—2) €n_3 implies that A.—3 = —p’ or ¢(p°).
If An_s = —p? we have ¥ = x»-s. Continuing this process, we conclude that y is equal
to either % (0 < £ < n—1) or 1,.

3 The second example

Let F, be the finite field with ¢ elements and F,* be the multiplicative group of Fy.
Then F.* is a cyclic group of order ¢—1. Let a € F.*, whose order is m. Put / = (¢
—1)/m. We denote by <a> the cyclic subgroup of F,* generated by a. Consider the <a>
orbits in Fy. It is easy to show that there are exactly /+1 orbits of <a> in F,. We write
them by @Qo, O1, Os,..., @ where O; = {a>- b;(0 < j < [) with the set of representa- ‘
tives of orbits {6y = 0, &y = 1, b, ..., b:}. Note that (o = {0} and || = m(1 < j < /).
We define a multiplication rule on the direct product G = <{a> X Fq by

(y, ), 2) = (v, x+yx').

Then G is a finite group of order mgq. Put H = {(y,0); y € <a>} and N = {(1, x); xr €
F,}. Then H is a subgroup of G isomorphic to <a> and N is a normal subgroup of G
isomorphic to Fy. Furthermore G = HN = NH. Let G/H be the coset space of G with
respect to H.Then G/H = {(1, x)H; x € F,}. Let H\G/H be the double coset space of
G with respect to H. Since H(y, x)H = H(1,x)H = H(1, ux)H for u € {a>, it fol-
lows that

and

D;,= UQ,2)HO<,;<]).

xeQj

Define e and €€ CG(1 < j <) by
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e=m"' 2 (a* 0),

Osksm—1

E;j = me(l,b,)e(léjsl)

Put # = eCGe. Then H is the Hecke algebra of G relative to H. Furthermore {e, ¢,
(1 <;<1/)} forms a basis of .

Theorem 3. Let / be the Hecke algebra of G relative to H. Then H is an (/

+1)-dimensional commutative semisimple algebra, whose multiplication table is given
by

e?=cec;=¢c;,(1<7<),

(%) e = mc?je-f—]gklslc!‘jsk(l <4 j<1),

where we put

ck=1b:i+0)N OO0 < k<)

Proof, Let 1 < 7,7 < /. Since

(1, b)e(l, b;) = Wl_lo 2 _1(1, b:+ a'b;)(a‘, 0),

st=sm

it follows that

cig; =m 2 e(l, bi+athy)e.

Ostsm-1

It can be written as

gic;=m 2 cke(l, bye.
Oskst

This means (% ). Define the map f:6:+ O,— b+ O: by f(bi+a'b;) = bj+a" b:(0 < ¢
< m—1). Then f is a bijection. In particular f induces a bijection from (b:+ ;) N Ok
to (b,+ @:) N O« Hence ¢k = ¢k, which shows the commutativity of H. /

To determine the set of all irreducible characters of H, we first decide the character
table of G. Let[G]and G be the set of all conjugacy classes of G and the set of all
irreducible characters of G respectively. Simple caluculation shows that

[G]=A{[1,0] ={Q, 0} [1, 6] ={(Q, x);x€ O}QA =i <)),
[a*, 0] = {(a", x);xe F}(1 < k< m—1)}

On the other hand, G can be determined by Mackey’s theorem" in the following
manner. Let ¢ be the nontrivial additive character of F,. For b€ Fy, we put y»(x) =
v (bx)(x € Fy). Let N be the set of all irreducible characters of N. Since N is isomor-
phic to Fy, it follows that N = {y; b € F,}. The set N/ <a) of {a> orbits in N is given
by N/ <a> = {¥»; 0 < i < I}. Let x: be the induced character ind$(..)(1 < i < /). On
the other hand, the set of all irreducible characters <a ¥ of <a) is given by <a> = {o;;
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0 < ;< m—1}, where
o;(a*) = (0 < k < m—1).
From Mackey’s theorem, we conclude
G={o;0<;<m-UU{xsl<i</}

where we define the character ¢; of G by ¢; (¢, x) = 0,(y). The character table of G

is given by
[1, 0] [1,6]J01<j<1) [a* 011 < k < m—1)
0','(0 < ] < Wl*l) 1 1 eZm‘jk/m
Xi(l == l) m 0§k§m—1¢(akbib") 0

It can be easily seen that the irreducible constituents of ind$(1x) are 1¢ = 6o and yx: (1
< ¢ < /). They yield all the irreducible characters of H in the following way?. Let x
be an irreducible constituent of ind§ (1x). Then by putting

x4e;) = |H’*IC§G]|CQ Dyl x(C),

we get the irreducible character y* of %. Finally the character table of / is given by

e e(1<j<1)
1 = o 1 m
x(1<i<]) 1 0;k§m—1¢<akbi’bj)
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