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Abstract

Multi-relaxation in physics of any kind is discussed. First, thermodynamic considera-
tion is developed mathematically in terms of the linear algebra to yield available
expressions especially to the study of point defects. Single and multiple relaxations are
well distinguished by means of a conjugate pair {x, £} composed of the partial potential
x and the density £. The notion of equivalence is introduced between two conjugate
pairs. There are two distinct ways to consider the relaxation; the one is based on the
transient process during the relaxation through the diffusion of density and the other
on the condition of the resultant state in equilibrium. These two ways yield two
different expressions for the relaxation of the compliance. Secondly diffusion operator,
relaxation function are introduced, to readily derive the differential equaton of the
observing cojugate pair {x, £} in such two ways as to use the relaxation function and
the diffusion equation.

1. INTRODUCTION

The elasticity is a well-known property of solid since the work of Hooke? in the 17-
th century. Hooke’s law is, however, not always valid even for a small stress; it occurs
that strain is not uniquely determined and lags behind a peridically oscillating har-
monic stress by a certain phase angle. The creep, elastic aftereffect and stress relaxa-
tion are typical quasi-static relaxations, while the internal friction, frequency depen-
dence of the compliance and the elastic modulus (or simply modulus) are dynamic
phenomena different from the elasticity. Relaxations are also observed in fer-
romagnetic materials through magnetic field and magnatic flux density, and in fer-
roelectric materials through electric field and electric flux density. These relaxations
are themodynamically irreversible process; that is, irreversible process represented
phenomenologically by equations without terms of higher than and equal to the 2nd
order of the general force. Zener? defined the irreversible linear process concerning the
stress and the strain as anelasticity, and stimulated researchers to lead to many
theoretical and experimental works®. This paper constructs mathematical fundamen-

tals of multi-relaxation with discrete relaxation spectra in solids from the ther-
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modynamic point of view.

2. ELASTICITY AND ANELASTICITY

Here, let physical quantities be functions of time in class C*. Two physical quan-
tities x, &, the product of which has the dimension of energy density (energy per unit
volume), are called conjugate variables and the pair of the variables is called a
conjugate pair, writtes as {x, £}; x or £ is said to be conjugate to £ or x, respectively,
and x is called a partial potential and £ a density. Although the following discussion is
general enough, teminology of the anelasticity is used for simplicity unless it leads to
misunderstanding.

The elasticity is the property that the conjugate pair {x, £} satisfies Hooke’s law:

x = J& or &= Mx, M =1/, (2.1)

where J and M are constants called the compliance and the modulus, respectively.
Equation (2. 1) implies that

(1) x (or &) is proportional to & (or x).

(2) The proportionality constants J and M are independent of time.
Condition (2) is satisfied both just at the onset of £ (or x) to the solid and after enough
time elapsed to attain an equilibrium state of x (or &). The load of & (or x) causes an
instantaneous unrelaxed state represented by eqn. (2. 1) with the unrelaxed compliance
Juv and the unrelaxed modulus Mu. The other case satisfying Condition (2) corresponds
to the equilibrium state expressed by the relaxed compliance /& or the relaxed modulus
Mz. The time independence in Condition (2) is realized in the two extremities of the
relaxation process. The process from the onset to the equilibrium is a transient
process, during which the instantaneous state relaxes to an equilibrium state. If the
proportionality between the partial potential and the density holds during the transient
process, the property is called the anelasticity.

Let a solid be in an equilibrium state and it suffers a change in density & from 0
(defined as 0 for the initial equilibrium state) to a small non-zero constant value &. The
partial potential x is then decomposed into two terms according to time dependence.
The time-independent term is called the elastic partial potential written as x., and the
time-dependent term the anelastic partial potential written as xa, such that

X= Xe+ Xa (2.2)
Xe= ]UEO (23>
xa= 6J ()&, (2.4)

where 6/ (¢t)is the differential of the compliance. The anelasticity then induces a
time-dependent term of the partial potential x, proportional to the density &. For the
anelasticity Condition (2) is, therefore, replaced by
(2’) The differential of the compliance 8/ (similarly M) is dependent on time, or
a function of time.
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3. RELAXATION

A relaxation reprenented by an equation with a relaxation time is called a single
relaxation and one represented with £ different relaxation times, a multi-relaxation of
order £, or simply a relaxation of order £. Let (#+1) conjugate pairs involve in a
relaxation. A conjugate pair should be fixed for the use of observing the relaxation,
called the observing conjugate pair and denoted by {x®, £®}. The other » conjugate
pairs are {x*, £9}(1, 2,..., »). In this case, eqns. (2. 2), (2. 3), (2, 4) are writtes as

x@ = x4 x{” (3.1)
X0 = JOED
x? = oJO(¢t) &,

—
w w
w DN
=

3. 1 Single Relaxation

Consider #» = 1 for simplicity. It is assumed that the anelastic partial potential x” is
induced by the conjugate pair {x'", £V} through the equation:

(0) (1)5(1)( ) (34)

with a proportionality constant A”. The density £ in equilibrium, denoted by &, is
furthermore assumed to be proportional to &%, namely,

<’E(l) — /l(l)ééo), (35)

where ¢V is a proportionality constant.

3. 1. 1 Diffusion of density

The diffusion of the density is assumed to be represented by the equation

(1)
(L-+g e = ety (3.6)

Z'Etl(gw

Here, 7 is called a relaxation time at constant £, and there involves only one
relaxation time in the relaxation accompanied with a conjugate pair other than the

observing conjugate pair. The case of » = 11is, thus, a single relaxation. By operating

<% o) ) to both sides of eqn. (3. 4), is obtained

(0) ),
L0 Xa __ Ap (0)
Xa + Z'g('lo)> Z-E(‘lJV 50 . (37)

This equation is the equation corresponding to that of the Voigt-model solid®**. The
solution of eqn. (3. 7) is given by

x0(8) = AV V& [1—exp(— #zéd)], (3.8)

from the conditions: x:”(0) = 0 and x{”(c0) = AP uPVEP (" )in eqn. (3. 7), £V(0) = 0).
The differential of the compliance 87 ”(¢) defined in eqn. (3. 3) is, thus, written as



12 Yoshimitsu Iwasaki

SJO(t) = AWV [1—exp(—t/rél)], (3.9)

and, especially, the relaxation of the compliance 8/%”, defined as 6]‘0) = x“”(OO)/EéO’ i
expressed as

O = AV, (3.10)
3. 1. 2 Condition of equilibrium

The equilibrium state resulted from the onset of & is attained when the driving
force of the density for diffusion vanishes, i.e., x = 0. Since x" is given by

KW = — AVED 1 b EW (3.11)

with a constant ¢, the relaxation of the compliance is expressed in a form other than
eqn. (3. 10) as

o = A (3.12)
b(lg .

In fact, eqn. (3. 11) becomes, in equilibrium,
—AVED 4 s ED, (3.13)

Combined with eqns. (3. 3), (3. 4), is derived

éO) A0 1) /](1)2
510):%@:76%:m, (3.14)

3. 2 Multi-Relaxation

Return to the general case of (#+1) conjugate pairs. Two conjugate pairs are said
to be equivalent, if their relaxation times are equal. Now, let £ non-equivalent relaxa-
tion times involve in the relaxation. Let #{3(; = 1,2, ..., k)be k different relaxation
times at constant £ related to the relaxation. Inltlally the solid is in equilibrium and
then a change in density £, denoted by &%, is given to the solid. The load deviates the
solid from the initial equilibrium. For each z{% there are »n” equivalent conjugate pairs

{xf? EMG =1,2,..., n'?), so that n = Zln“’. The observing partial potential consists

of the two terms: the time-independent elastic term and the time-dependent anelastic
term. In the case of multi-relaxation, xi” is expressed as

k
xs” = 2 a0 (3.15)

i=1

x0 — (z) E(z) (316)

where %) ’s are anelastic terms induced by the conjugate pairs { ¥, E®}(i =1, 2,..

k) with @ = (00, 5,0, 1), E0 = (&, &P,..., &), 1V = ‘(A{"/lé” ASh) w1th
constants A7 =1, 2,.. “’) and A+ &Y is the inner product of the two vectors.
Each component of the den51ty vector & in equilibrium, denoted by £ Z W , is assumed
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to be proportional to &”, namely,

—

£ = &0

where £ is the vector composed of the proportionality constants.

3. 2. 1 Diffusion of density

The temperature detemines the active relaxations which occur in solid. Here, let the
i-th conjugate pair { ¥ ", £} dominates the relaxation. The solid perturbed by the
onset of &Y approaches to an equilibrium with the diffusion of the densities &"(; = 1,
2,..., n'”) which correspond to a relaxation of the same relaxation time 4. The
equation of the diffusion of density is given by

d 1 \Yzo_ 0 /;m
<dt + re‘f'c?»> SV =St (3.17)
0 . d 1 . )
perating T o) to both sides of eqn. (3. 16) yields
(0) T, @)
foyy Xag AT
e O (3.18)

The relaxation of the compliance is, in this case, expressed in the form:
SJ) = AW @ (3.19)

3. 2. 2 Condition of equilibvium

In the previous paragraph, the relaxation of the compliance is derived, based on the
transient process from the initial perturbed state to the final equilibrium which
corresponds to the relaxation through the diffusion of density. Another formulation of
the relaxation of the compliance is attainable by considering only the final equilibrium
where the deriving force for the diffusion of density vanishes. Since

ko — .
du = xde” — le Wedew (3.20)

At

with the internal energy density u, the partial potential x '’ is

(D) —

X —grad £ Vu, (3.21)

—

which implies that x *

is the deriving force for the diffusion of the density & . In
equilibrium, the deriving force is zero; that is,

X9 =0. (3.22)
Let x“?and £ be related by a linear equation

X0 = —(F9) 04 B £, (3.23)

where B}, is a symmetric #'” square matrix. The condition of equilibrium (3. 22), then,
yields the following expression different from eqn. (3. 19)
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2

SJE) = ”Déf&f”P;‘:& 1o (3.24)

where D{ and P{4 are n'? square diagonal and orthogonal matrices, respectively,
such that

B = P DS P, (3.25)

The representation (3. 24) is available especially to the study of point defects®®.

3. 3 Equation of Multi-Relaxation

If many relaxtions are simultaneously activated, their superposition is observed
through the observing partial potential x'. Each relaxation may individually develop,
if the interaction of conjugate pairs is negligible. In this case the relaxation of the
compliance is also expressed as (3. 19) and (3. 24) for the active relaxations and 8/£") =
0 for the inactive, by considering that the vector £ is 0 and the matrix B is zero
matrix for the inactive conjugate pairs at the given temperature of the solid.

The relaxation of the observing partial potential is due to the relaxation related to
the conjugate pairs other than the observing conjugate pair. A direct relation of x”
and £ is consequently derived by subntituting 8/§ for A ¥+ £ and expressed as the
equation of multi-relaxation:

£ ©® — |:]&°’+iZ:}18]§i’{1—eXD(—f/fe(‘i>)}]5§0) (3.26)
or < = | o (1—exp(— /i) | (3.20)

4. DIFERENTIAL EQUATION OF MULTI-RELAXATION
4. 1 Diffusion Operator
Let Dr be

def o 1, “1_
D.= ar + rl = d:+ z_I, (4.1)
where d; g—a?;—, and r is a real positive constant; i.e., 7€ R*(R":the set of all positive

real numbers) and [ is the identity operator. Since the equation of diffusion is written
as epn. (3. 17):

o (D)
D ED = &V /;(13 ' (4.2)
e{ 1]

the operator is, here, called diffusion operator. The following propositions are readily
derived from eqn. (4. 1).

Proposition 1 The diffusion operator satisfies the following properties:
(1) D:is a linear operator of C*into C*.
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Df(t) =0 <= f(t) = aexp(—t/r)(a< R)
D.exp(—t/r) = ( 1 1)exp(—l‘/l')

especially for 7" = r,

D.exp(—t/r) =0

(4) Dfaz—a?(aG R)
(5) qaf(t)d—;ef 1—exp(—t/r), called a relaxation function
1 1
DT @r(t) <?” r>¢r(f)+7
especially for " = r,
_ 1
Drgor(l‘) = r
6 f,geC”
D (fg) = &Df + fD-g— %
_ oo (11 1, _z
(7) Delgef) = ¢,D,f+( L Do+ (15 o)/
especially for 7" = r,
De(gef) = pDef +--(1=92)f
Proof.
(1) For VA, € C*,Vai, a:€ R,

D.(a:fi+axf2) = <dt +Ll>(a1f1+azfz> = dt(dxf1+dzfz)+’1zf(alfl+a2f2)

= (mdih+ adrf2) + (alfl +azf ) = al(d¢+~1;l>f1+az<d¢+—1;[>fz
= a1D:fi+ azD-fe.

(2), (3), (4) are easily proved.

(5)

D.¢:(t) = D:(1)—Drexp(—t/r) = (%—%—)exp(%/f)
1 1

— (L) exp(- o+t = (L) e+

4 4

D.(fg) = <dz+%l>(fg) re+re’+-= fg

= g<dt+—371>f+f(a’z+ - [>g g gDTf+fDrg_lg

(4.8)

(4.10)

Di(pef) = fDege+peDef —-F ’f {f(—l—-1>¢r *{}+¢TDrf~%¢

T

— oD f+ () of +=(1—F0: )/ .
(7)o + 21w

Definition 1

(1)

def

D (D.lre R U{eo}), D21, Do = d,
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(2) For VD, D, €D,

(DoDw)f = Do(Dof) (fe C%) (4.11)
(3) ar =L AT

Proposition 2 For YV D:, Du,..., Dr, € D,
(8) D:D:, is a linear oparator of C* into C*

(9) DuDe, = DD, (4.12)
10 (DeuDv)) Dey = Dey(DeyDsy) (4.13)
) DeDe=di+( b+ D)a+ L (4.14)
1 110, = (T D) Do = (T Do) ai+ (T Do) 1

- df+(§711%> RS +<11:I T;)l - §<Q§Qn Jg), Zl',> o (4.15)

where Q; is a subset of 7 elements of £,, called a subset of order 7 of £2,, the summation

9_29 is made over all the subset of order : of £, and IL means the product over all

the elements of £2;, and, furthermore, £ = ¢, 1s =1, Z 159,

jeo

Proof.
(8) De, D, are linear operators. Then,
(DT1DTz)(alfl+azf2) = DZ'1(alDTzfl+ aZDZ'sz) - alDleTzfl+a2D71DT2f2 .

O (DD = (derid )| (dtt1)7 | = (de+ T )(dr+L)
f=[df+<i+%2>dt+ L ]f.

01 [5%¢}

= azr+(Las+Lar)+

(10 is easily proved, similarly to (9), and (1), (12) are derived from (9), (10).

O

4. 2 Derivation of the Differential Equation Based on the Relaxation Function
Equation (3. 27) is written as

k
= (BT ) &0, (4.16)
By defining operaors D and D; as

def
D =

||:ja-

Dz, and D = dt ((io)r[’ (417)
and operating them to eqn. (4. 16),
Xl = RSTOD (g )£
k k
g OJ &} I1I¢ Dj(Di(gDT;gg,)Eém))
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“‘26(0) ﬁ D<5(§O))
- i=1 ]R l]:l,]ti J Tg(tlo)y
& 0) &
= O T pep (4.18)
i=1 Z'g(o)v =1 *i
k 8](0)_ k
D = (295 11 D,)es (4.19)
=1 2'5‘37 j=lj*i
10 = x @ 4O = x© _ JO O (4.20)
k
Dx©® = (](°’D+Z ar]R 1H Dj) 3 (4.21)
i=1 s* Ji=1j%¢
. k def
with Il D, =1 (k=1) (4.22)

4. 3 Derivation of the Differential Equation Based on the Diffusion Equation
From eqgns. (3. 8), (3. 19), the diffusion equation is given by

(0)
Dty = iep. (4.23)
k k k
Then, Dxe” = ZDxat = 2 T Di(Dixal:

i=1 i=1j=1,7%
k k (0) k (0) k

=x 1 _Df<8]<*§;’ é‘”):, O M1 D (4.24)
i=lj=1,j%¢ Te i=1 Tg0 j=1,5%i N

4. 4 Explicit Representation of the Differential Equation of Multi-Relaxation of
Order <3
Here, the observing conjugave variable & is considered any function in C* and
formally substituted for &®. The reasoning will be given in another paper”.
4. 4. 1 Single relaxation (k=1)

Since D = D,
(0)
D = (o 81 4.5
<o>+___ — J4 0)5(o>+_ffij‘_5]f<_ls<0> (4.26)

4. 4. 2 Relaxation of ovder 2 (k=2)

DDA = [ 70 DD+ D, D, [, (4.27)

. 11 X© JOL8I0 O+ 5]&) '
(0) (0) (0) 5 ] [(Q]
x +(r<zg,+ ;?&)x + i = /€ +( Wt )¢

©) (0) (0
f —f—f(ﬁ Té% 8J%% £, (4.28)

4. 4. 3 Relaxation of ovder 3 (k=23)

. (0
DD = [ 1O DD+ L DD Ui D B pin 0. 29

= (0) 1 1 1>"(o> < 1 1 1 )'(0) JL
X <f;}a,+ AT @) T\ T @a T ) Y TR
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(0) 0 (0) 0 (0) (0 . (0) 0 0)
]l(JO) 5 (0) + < U Z‘-E‘lf]lg,{ _+_ U +8]I$,% + ]U +?]R, )5 0) _+_ ( ]U +6]§,2+6]§,2

Z'e((z& Z'g(?t) Z'g((lgb Z'e((z(?)
JO+ 8T8+ 8789 JO+ 7%+ 6]&?1) : 0) ]6°)+8]§‘,’%+6]§?%+6]é‘,’§> ©
= ) S = ) €7+ ORI &% (4.30)
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