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It is well known that if the coefficient matrix is a generalized diagonally dominant
matrix, then the Jacobi and the Gauss-Seidel methods converge. We know in our
experiments that the number of iteration of these iterative methods is inveresely
proportional to the degree of diagonal dominance of the coefficient matrix. In this
paper, our is to present the definition of the diagonally dominant ratio as the degree
of the convergence rate, and we define the diagonal dominator to improve the diago-
nally dominant ratio.

1 the diagonally dominant ratio
To solve the liner system

Ax = b,

the SOR method has been used widely in engineering fields, where A is a real n X n
matrix, b is known #n X1 vector, x is unknown # X1 vector. For a matrix A satisfying
strict or irreducible weak diagonal dominance, the convergence of the Gauss-Seidel
and the Jacobi methods is well known [1]. As is well known, an # X n complex mtrix
A = (ay) is said to be strictly diagonally dominant if

las| > ;{ las| for 1<i<n, (1)

and irreducibly diagonally dominant if irreducible and if

la:l = ? lasl for 1 <7< n, (2)

with strict inequality for at least one 7[1][2].

It is well known that if matrix A is not weakly diagonal dominance, and the classical
iterative method such as the Jacobi and the Gauss-Seidel methods convergencce, then
A is generalized diagonally dominant matrix. We now give Lemma and theorem for
generalized diagonally dominant matrices.

Lemmal. [3] Let A = (a.;) be an n X n matrix. Then A satisfies generalized diagonal
dominance by rows if and only if there exist positive vectors u = [u1,u2, ", u»}]" € R”
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satisfying

lasdu: > 2 lasslu;.
g
Theorem 1. [4] Let A = I—M be an irreducible L-matrix. Then the Gauss-Seidel and
Jacobi methods are convergence for A only if A satisfies generalized diagonal domi-
nance by rows.

We analyze the relation of between a diagonally dominant ratio and convergence
rate, from the properties of diagonal dominance and convergence. So, we define the
diagonally dominant ratio.

Definition 1. We define the diagonally dominant ratio (DDR) p; as follws ;
p. = ————laﬁl (1 )
‘ 2, laz‘j| T

FEX)

and the average DDR p

_1& _lai
pi - n zgl ;_'aij"

J

From Definition 1 and Lemma 1, if p. > 1 then a coefficent matrix A is diagonal
dominance. When p > 1, A is generalized diagonal dominance.

Now, we show that when the diagonally dominant ratio increase, the eigenvalue of
the iteration matrix decrease. In [4] the upper bounds of spectral radiuses of the
Gauss-Seidel and the Jacobi are given.

Corollary 1. [4] In the case of the ordinary Gauss-Seidel and Jacobi iteration matrices
for A = I+ L+ U, the upper bounds of eigenvalues are respectively,

Bes = max T%l—-’ B = max (Li+us),

where /;, u;, are sums of modulus elements in row ¢ of the triangular matrices L, U,
respectively. If in addition max.(/;+ u:) < 1, then the following inequalities are satis-
fied,

Bcs < Bj < 1
From this Corollary, we obtain the following Theorem for the Jacobi method.

Theorem 2. When the diagonally dominant ratio p;, 1 < 7 < % of a coefficient matrix
increase, the upper bound of spectral radius of the Jacobi iteration matrix decreases.

Proof We assume p? < p? for 1 < 7 < n, where p¢, p? are the diagonally dominant
ratio of A = (ay) = [°—L*—U% B = (b;) = I°*—L°— U®, respectively. Then, we
obtain the relation of between of A and B as follows
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’

where [¢, u?, [? and «? are sums of modulus elements in row ¢ of L% U? L°® and U?,
respectively. Therefore, if p? < p? (1 < 7 < x) then the upper bound of the spectral
radius of the Jacobi iterative matrix for B is smaller than one for A.

2 Examples for the diagonally dominant ratio

To show that the number of iteration depends on the diagonally dominant ratio, we
test by numerical examples with random value entries. We also test the skew-matrix
with the strictly lower triangular part is negative and another part is positive. The
computation results for p=1.05 and 2.00 of random Z-matrices and random skew-
matrices are shown in Table 1.

It is clear that for » = 50, 100, 200, 300 when the diagonally dominant ratio is same,
the numbers of iteration for the Gauss-Seidel method for are about same. Table 1
shows that the number of iteration depends on the diagonally dominant ratio.

The results for the Jacobi (J), the Gauss-Seidel (GS) and the SOR method for various
value of p are shown in Tables 2 and 3. The convergence criterion is

x(k+l)*x(k)
”—W < 10FE-—7. (3)

From Tables 2 and 3, we know that the number of iteration decreases with increasing
p for all iterative methods. Therefore, we try on the improvement of the diagonally
dominant ratio.

From Tables 2, 3, it is clear that the number of iterations of iterative methods depend
on the diagonally dominant ratio. Moreover, the optimum parameter of SOR method
depends on the diagonally dominant ratio. When p is nearly to 1 the number of iteration
changes intensely.

Next, we propose the diagonal dominator to improve diagonally dominant ratio.

3 the diagonal dominator

We consider a procedure for increasing the diagonally dominant ratio of A. So we
define a diagonal dominator @Q(f8), where £ is a positive parameter. We call this
parameter the diagonal domination parameter. By pre-multiplying with Q(4), we

Table 1 (number of iteration for Gauss-Seidel method)

P matrix n=50 n=100 n=200 n=300
1.05 Z-matrix 198 211 222 209
' Skew-type 270 258 263 265
- i 19 20 21
2 00 Z-matrix 20

Skew-type 19 20 21 21
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Table 2 (N=50)

b J GS SOR,, optimum @
1.016734 1081 589 84 1.75000
1.026800 593 322 56 1.70000
1.036867 414 225 44 1.65000
1.046934 321 175 38 1.60000
1.057000 264 144 36 1.60000
1.067067 224 122 30 1.55000
1.087200 174 95 26 1.50000
1.117400 132 572 23 1.45000
1.147600 107 59 21 1.40000
1.197934 83 46 18 1.35000
1.258334 66 37 16 1.30000
1.348934 51 29 14 1.25000
1.489867 39 23 12 1.15000
2.103934 22 14 9 1.10000
2.909267 16 11 1.05000
3.311934 15 10 1.05000

Table 2 (N=50)

p J GS SOR optimum
1.013846 1145 625 91 1.75000
1.023884 610 332 54 1.70000
1.033922 422 230 43 1.65000
1.043961 326 178 39 1.60000
1.053999 267 145 34 1.60000
1.064037 226 124 30 1.55000
1.084113 175 96 26 1.50000
1.114227 132 73 22 1.45000
1.154379 101 56 19 1.40000
1.194532 83 46 18 1.35000
1.274836 62 35 15 1.30000
1.345103 51 29 14 1.25000
1.485636 39 23 12 1.20000
2.107997 22 14 9 1.10000
2.579787 18 11 8 1.10000
3.322605 15 10 7 1.05000

obtain the following equation

QB Ax = Q(B)b,

where Q(B) is the nonsingular. Accordingly, choosing of @(8) is important, but often
a diffcult part of the problem. From our computational results, we obtained that we
make the choice Q(8) = (I+BU), where U is the upper triangular part of —A and /
is unit matrix, then the diagonally dominant ratie is larger than of original matrix A.
If # =1 then the diagonal dominator is similar to the preconditioning matrix f the



On the diagnoally dominant ratio 5

Adaptive iterative method [5].

Remark 1 The performance of the diagonal dominator is to improve the diagonally
dominant ratio of A, but one of the preconditioning matrix is to improve the conditino
number of A.

We show the effectiveness of the diagonal dominator for the model problem [1, p.
202] in Table 4.
The DDR of the Gauss-Seidel method means the diagonally dominant ratio for original
coefficient matrices, and DDR of the adaptive Gauss-Seidel is the ratio for (/+ U)A.
For m = 5,10,15,20, the diagonal dominator is available. The Gauss-Seidel method with
the diagonal dominator decreases approximately half number of iteration of the
Gauss-Seidel iteration method.

Next, we use @ = (/+aS) as the diagonal dominator, where

0 —ap 0 - 0
0 0 —an -
S=|: i
0 0 0 — Gn-1n
o0 0 0 o0

transforms the first upper codiagonal part of (/+S)A to zero. If @« =1 then the
diagonal dominator is the preconditioning matrix of the motified iteration method [6].
We use the parameter « as follows

0 —ain: 0 0
0 0 — e
aS = | : . . ’
C T Un-1Un-1n
0 0 0 0

where a = (al,a2,,an-1).

The behaviors of the spectral radius of the Gauss-Seidel iteration matrix of (/
+aS)A versus @ = a1 = -* = an_1 for the strictly diagonally dominant Z-matrix A is
shown in Fig. 1.

In Fig. 1, a variation of the spectral radius of the Gauss-Seidel iteration matrix for
(I+aS)A is extremely small as compare with one of the SOR method. Moreover, the

Table 4
Gauss-Seidel Adaptive  Gauss-Seidel
DDR ite. DDR ite.
5 1.41667 37 1.753531 17
10 1.16461 144 1.28506 64
15 1.10204 317 1.27558 140

20 1.07387 555 1.12670 245
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Fig. 1 1 the spectral radiuses of proposed method and the SOR method for random Z-matrix (n = 10).

0.000000

convergence curve is relatively flat for ¢ > a.p:. Hence, the rough estimation of the
diagonal domination parameter is effective. Moreover, for the diagonal dominator (/
+aS), we proposed the estimating technique of the diagonal domination parameter a;,
i=12-n—11in [7],

— ui+2dii+l

= =7 1<:<n-—1 (4)

)

4 Examples for the diagonal dominator
We now test the validity of the diagonal dominator and above estimation (4) for a
following matrix

¢
1 C1 C2 C3 C1
C3 1 C1 C2 C1
C2 C3 C3

A= ,
C1 1 1 C2
C3 C2 C3 1 C1
c3 C1 C2 C3 1

n T ur2

where ¢ = We set b such that solution is x7 = (1,2,---,%#). Let the

convergence criterion be —ﬁ%}lf’c—k” < 107%. We show CPU times and the number of
iterations for » = 20,30,50,100 in Table 5. For comparison, we also show results for the
Gauss-Seidel method (Q = I), the modified Gauss-Seidel method (Q = (I+S))[5] and
the optimum SOR method (SORp:).

It is clear that the number of iteration of the Gauss-Seidel method with the diagonal
dominator are smaller than of standard the Gauss-Seidel method. An optimum parame-
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Table 5 Z-matrix

Q={U+aS)
n optimum est.
ite. (aop:) time  ite. time  ite. tme  ite. time ite. time  ite.(wop) time

20 19(10.4) 0.01 31 0.01 65 0.02 59 0.02 8 0.03 20(1.50) 0.01
30 23(17.4) 0.01 48 0.02 93 0.06 87 0.05 50 0.09 25(1.55) 0.01
50  28(32.3) 0.04 80 0.10 146 0.16 141 0.15 79 0.33 30(1.65) 0.03
100 38(72,9) 0.22 156 0.62 269 1.01 265 1.00 148 2.56 42(1.75) 0.18

=1 R={U+S) Q=1+U SORG.p:

Table 6 Model problem

QR={U+aS)
m optimum est.
ite. (aope) time  ite. time  ite. time ite. time ite. time ite. (wops) time

10 20(2.65) 0.06 20 0.06 110 0.27 69 0.18 50 0.56 24(1.53) 0.10

15 26(3.0) 0.61 45 1.01 230 4.85 144 3.00 108 7.74 34(1.66) 0.73
20 34(3.2) 2.58 82 6.5 385 29.24 242 18.7 185 54.65 54(1.73) 4.15

Q=1 Q=U+9) Q=I+U SOR,,:

ter wop: 0f the SOR method is obtained by numerical computation.
Next, we test for the model problem. We use a standard central difference formula

on a uniform mesh with length 2 = % Table 6 shows CPU times and the number of

iterations. We adopt the theoretical value wop: = A for the SOR method.
1+ sin <—>

5 Conclusion

We found three results of the diagonally dominant ratio from many experiments;

1 When the diagonally domiant ratios equal for given matrices, the number of
iterations of Jacobi and Gauss-Seidel method is same number independently to the
order of matrix A, respectively.

2 When the diagonally dominant ratios are nearly to different matrices, the value of
the optimum parameter of the SOR method is nearly equal to to the order of
matrix independently.

3 By calculating an asymptotic convergence rate from the diagonally dominat ratio,
we are able to estimate a number of iteration from the diagonally dominant ratio.

For example, from Table 3, for p = 1.013846, we have

7

1 = 1172.138...

~log 7473546

It’s easy to find that the number of iteration of the Gauss-Seidel method of Z-matrix
is nearly equal to one of Skew-matrix, and the number of iterations are strongly
depend on the diagonally dominant ratio.
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