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Abstruct

The complex octonion formulation of Cartan's pure spinors in eight dimensions is
described. It is shown that such spinors are equivalent to null octonions. Furthermore,
by making use of the null octonions, the geometrical interpretation of pure spinors is
given.

1. Introduction

Spinors were introduced into the quantum physics to make it relativistic covariance by
Dirac?. On the other hand, Cartan developed a geometric theory of spinors, which can
be applied to complex Euclidian space of any dimensions?. He showed that a null
v-plane in 2v dimensions or 2v-+1 dimensions corresponded to a spinor?~®. Such a
spinor is called pure. Namely, the pure spinors are completely geometrical objects.
Furthermore, Cartan observed that, in eight dimensions, there was a beautiful symme-
try with respect to the permutation between vectors and spinors. Such a symmetry is
called the principle of triality>>59%.

Independently to the theory of spinors, octonions were discovered by Cayley®, as an
extension of Hamilton’s quaternions. The algebraic correspondence between octonions
and spinors in eight demensions was shown by Gamba'®. Such a theory was generally
discussed by Sudbery'?. Furthermore, some authors constructed octonionic spinors in
ten-dimensional Minkowski space!?~'”. However, in those theories, the algebraic
relations between ordinary spinors and octonions are merely described. Namely, pure
spinors is not discussed in such theories. In this paper, we will discuss the geometric
relations between pure spinors in eight-dimensional complex space and complex
octonions.

In section 2, we will describe some fundamental algebraic properties of complex
octonions. Such properties are necessary at the least in this paper. The algebraic
properties of null octonions which are special cases of complex octonions will be
discussed in section 3. In section 4, we will describe the processes which make complex
octonions correspond to SO(8) vectors and spinors. The principle of triality will be also
described. In section 5, the relations between pure spinors and null octonions will be
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described. By making use of the null octonions, we will directly give the geometrical
interpretation of pure spinors. Namely, such null octonions correspond to totally null
four-plane of two types, and such planes are called a-planes and B-planes, respectively.
In section 6, the intersections of a-planes and g-planes will be described.

2. Complex octonions
Before discussions of the algebra of complex octonions, we introduce the complex
quaternions. Because we treat in later sections the complex octonions with an exten-
sion of the complex quaternions.

A complex quaternion A is an element of a four-dimensional vector space over
complex numbers and is defined by

A= ao+ I+ Ja:+ Kas, oy
where I, J, and K are quaternion imaginary units defined with the relations

IP=]*=K*=—1,

J=—-]I=K, JK=—-K]=1, KI=—IK=], (2)

and ao, a1, a», and a3 are complex numbers. The quaternion conjugate of A, denoted by

A,
A:= ao—Iay— Ja,— Kas. @)
The inner product of any complex quaternions A and B is defined by
A-B:=+5(AB+BA) =+(AB+BA)
= aobo+ ar1br+ azb2+ ashs € C, (4)

where C is a set of every complex number. Furthermore, the norm of A is given as
follows;

N(A):= A A= a’+a’+a’+a. (5)

We denote a set of every complex quaternion by CH. CH is not a division algebra but
a composition algebra.

Let us consider a Cartesian product CH x CH. Then we define for such objects the
following operations;

(A1, A2)(By, B:) = (A1Bi— B:Az, A:Bi+ B: A1) (6)

and

(A1, Az) = (A_1, —Az) (7)
where A,, A;, B: and B, are any complex quaternions. Note that the operations (6) and
(7) are linear. We define a complex octonion as an ordered pair of any two complex
quaternions with the operations (6) and (7). The operation (6) is called Cayley-Dickson
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product and (7) is called octonion conjugate. Moreover we denote a set of every
octonion by CO. From the definitions (6) and (7), we can prove easily

ab=ba (8)
for any complex octonions a and b.
We define octonion units e, ei, ..., e; as follows;
e:=(1,0), e:=(1,0), e:=(/,0), e:=(K,0),
e:=(0,1), e:=(0,1), e:=(0,)), e:=(0, K). 9

According to the multiplication rule (6), we see that the unit e, is the identity for any
complex octonion with respect to the octonion product. Furthermore, according to the
mapping rule (7), e is invariant with respect to the octonion conjugate operation.
Therefore, we can identify e, with mere “1” in real or complex numbers. Using this
fact and (9), we can write any complex octonion a as follows;

a=a+ea+ ... +ear. (10)
Then, its octonion conjugate can be expressed as follows;
a=a—ea— ... —ear. (11)

We can call the octonion units except for e, the octonion imaginary units.

We find that a triple octonion product for any complex octonions does generally not
satisfy the associative law. Therefore, for a convenience of calculations of complex
octonions, we introduce the associator defined as

[a, b, c]:=(ab)c—a(bc), (12)

for, any complex octonions a, b and ¢. Note that the linearity holds for the operation
(12). The associator has the following identities;

[a, b, c]=—[b, a, ¢c]=—[a, ¢, b]= —[a, b, c]=—[a, b, c], (13)
[a, ba, c]=[a,ab, ¢c]=dala, b, ¢c]=]a, b, cla. (14)

The proofs of these identities are accomplished by the direct calculations. In an other
paper'®, we will give them by making use of a symbolic computation system.

We can construct a complex number from any two complex octonions a and b as
follows;

a b= %’(al;-f- ba) = %’((Yb-f- I;a) = aobo+arbr+ ... +a:b:< C. (15)
We can easily show that such a product has the following symmetries;
a-b=b-a=a-b. (16)

The multiplication rule defined by (15) is called the inner product of complex octonions
a and b.
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PROPOSITION 1. Let a, b and ¢ any complex octonions. Then the identities
a-bc=b-ac=-c-ba (17)

hold.
Proof. From (13) and (15), we have

a- be = (a(be) +(be)a)
— ~((a&) b+ blc@)—[a, &, Bl+(b, ¢, a))
=b-ac.

By similar calculations, we can prove the other identities. -

A self inner product of any complex octonion a is called the norm and denoted by
N(a), i.e.

N(a):=a*a=ad=aa<C. (18)
We can prove easily that the identity
a(ab)=(ba)a=N(a)b (19

holds for any complex octonions a and b.
PROPOSITION 2. Let a and b be any complex octonions. Then

N(ab) = N(a)N(b) (20)

holds.
Proof. From (13), (14) and (19), we have

N(ab)=(ab)(ab) = a(b(ba))+[a, b, ab]
= N(b)aa—[a, b, abl=N(a)N(b)—[a, b, bla
= N(a)N(b).

Thus this proposition is true. L]
PROPOSITION 3. Any complex octonion a can be expressed in the form

a= bc (21)
for a suitable choice of complex octonions b and c.

Proof. Let N(b)# 0. Then, if we put ¢ = ba/N(b), we have from (19)

_ blba) _ N(b)a _
="N(b) ~ N ~*

Thus this proposition is true. ]

be

3. Null octonions
A non zero complex octonion a is called null if and only if its norm is zero, i.e. N(a)
=0. Note that for ordinary octonions a (based on real number field) N(a)=0 is
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equivalent to a=0. It is meaningful that a is a null octonion if and only if it is a
complex octonion or a split octonion.

PROPOSITION 4. A complex octonion a is null if and only if for any decomposi-
tion a = be either N(b)=0 or N(c)=0.
Proof. Suppose a = be. Then, from (20), we have

N(a)=N(b)N(c).

When N(a) =0, the above expression must vanish. Therefore, we must have N(b) =
0 or N(e¢)=0. Thus this proposition is true. L
Before showing an important property of null octonion, we preparatorily describe
two lemmas in what follows.
LEMMAL. Let A, B and C be any complex quaternions. Then

((A, 0), (B, 0), (C,0)]=0 (22)

holds for the three complex octonions (A, 0), (B, 0) and (C, 0).
Proof. Note that complex quaternions have the associativity. Now, from (6), we have

(4, 0)(B, 0)=(AB, 0).
Therefore we have
(4, 0), (B, 0), (C, 0)]=(A, B, C], 0)=(0, 0)=0.

Thus this proposition is true. n
LEMMAZ2. The set

{(4, 0)JA=CH}CCO (23)

is isomorphic to CH.

Proof. Let A and B be any complex quaternions. Then, from (6) and (7), for two
complex octonions (A, 0) and (B, 0) constructed by those complex quaternions, we
have

(A, 0)(B, 0)=(AB,0), (A4, 0) =(A4,0).
Furthermore, from these expressions and (15) and (18), we have
(A, 0)-(B,0)=A-B, N((A4,0)=N(A).

From these facts and LEMMA 1, we see that this proposition is true. n
From LEMMA 2, we can simply denote a complex octonion (A, 0) by the complex
quaternion A in the complex octonion algebra, i.e.

(A, 0)=:A. (24)

Therefore, for example, we can write (A, 0) b= Ab for any complex quaternion A and
any complex octonion b.
PROPOSITION 5. Let a= (A, As) be a null octonion satinfying N(A)) = —N(Az)
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+ 0. Then
ab=alU, U<CH, (25a)
ba=Va, VECH (25b)

hold for any complex octonion b= (B, B.), where

1 — =

U = Bl—mA1BzAz (263)
1 — —

V=58 7mAszA1. (26b)

Proof. From (6), we have
(A1, A2)(Bi, By) =(A1Bi— B:A., A:Bi+ B A)).
On the other hand, substituting (26a) into alU and noting N(A,) = — N(A.), we obtain

aU = (A, A)(U, 0)=(AU, A:U)

= (4B~ N (A) Bes, AuBi— iy N AD BAL)
=(AiBi— BzAz, A:Bi+ BA)).

Thus we have ab= alU. Similarly, we have ba = Va. n

4. SO(8) spinors and complex octonions

The basis treated in this paper will be an eight-dimensional complex linear space C®.
Now we write 2, (a, b, ...=0, 1, ... 7) for coordinates on C? Then the action of SO(8,
C) on C® is defined as the transformation which preserves the quadratic form zcz..
Similarly, the spinor and dual spinor spaces for SO(8) are also each eight-dimensional
complex linear spaces. Let w4 and var (A, B, ... and A, B, ... = 0, 1, 2, ... 7) be
coordinates in such spaces, respectively. Each of the spinor spaces is given the invar-
iant quadratic form waus and va-va, respectively.

Furthermore, there is an invariant trilinear form yean 2attava. Its coefficient yaaar can
be used to carry out multiplication between vectors and two kinds of spinors. For
example, the product of a spinor u4 and a dual spinor v is given by yeaa-#44v4,, and the
resultant quantity in a vector. Namely, y.44 maps a diret product between the
eight-dimensional spaces of different two types into another eight-dimensional space.
Such a yaaa satisfies the following relations;

Yecala YelBYB = Ycaar\VeBlay = Oaslarp (27a)
Yiaica’\b)cB” = YacC(A’|'YbC\B) — (SabaA'B’ (27b)
ValAC"Y1b)BC' == Ya(AIC"YbIB)CT = OabOas. (27¢)
Let us consider two octonion units e, and e; (a, 8, ... = 0, 1, 2, ... 7), where e, =1.

Then we define a multiplication of their units as follows;
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€€y .= eafaﬂy- (28)

We call the real numbers fusr the octonion structure constants. By taking the inner
product of any octonion units and (28), we can easily obtain for the octonion structure
constants the following expression;

Jasy = €a* €€y (29)

PROPOSITION 6. For any complex octonions a = esas and b= b,

ab = eafasyashy, (30a)
aE = eﬂfaﬁyaaby, (3Ob)
ab=e;fapaqbs, (30¢)

hold, where a, and b are any complex numbers.
Proof. By taking a multiplication between (28) and asb,, we can obtain easily (30a).
Next, from (29) and (17), we have

fﬂ’ﬁT = €g° €€y = €5 €q ér = €y° éﬁea.
Comparing this expression with (28), we have
€:€; = €ufpar, €5€r:= €afysa.

By taking multiplications between these expressions and asb,, we can obtain (30b) and
(30c), respectively. =
PROPOSITION 7. The octonion structure constants satisfy the following identities;

feaigefinse = fawiefrire = Faieafines = faciaifres)
= fe(aiafe1ns = feataiferis) = OarOss. (31)

Proof. Put a= es,as, b= e.b. and ¢ = eq.c.. Then, from (30a), we obtain

(ab)-(ac) = feasfers@atybsCs = fe(aisfe1r)s@arbsCs.
On the other hand, using (17), we have

(ab):(ac)=c-(alab)) = N(a)e: b= 5r0ssa2a,bsCs.
Since these expressions hold for any a., b. and c., we have

Fecaiafeins = 8arOgs.

Similarly, the proofs of the rest identities are evident. n

Comparing (31) with (27), we can see that the former relations are equivalent to the
latter. Thus we can identify the octonion structure constants fas, with the coefficients
vaanr Of the trilinear form in eight dimensions. Then the expressions (30) can be
regarded as the multiplication rules between vectors and two kinds of spinors.
Therefore, we can express a vector 2z, a spinor u#4 and a dual spinor va by the
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following octonions;

2 — Z2=2+ezn+ ... +ez, (32a)
Usa— U= U+ e+ ... +erus (32b)
var— U= wt+evi+ ... +er. (32¢)

We denote the spaces of such complex octonions by COv, COs and COc., respectively.
PROPOSITION 8. Inner products between COv, COs and COc¢ are invariant under
the SO(8)-transformations if and only if we have

z-22€C, for z, 22 €COy, (33a)
u-uesC, for u u<COs, (33b)
veveCC, for v, v=COc¢. (33c)

Proof. Note that the quadratic forms defined on the spaces on which the SO(8)-
transformations act are only 2¢2., #aua and va-va. Therefore allowed inner products
are only 2.2 wuaua and va-va. By this fact and the inner product (15) of complex
octonions, we understand that this proposition is true.

PROPOSITION 9. Octonion products are covariant under the SO(8)-transformations
if and only if we have

uv € COy, for u€ CO;s and v € COg, (34a)
20 € COs, for 2= COv and v COc, (34b)
itz & COc, for ue COs and v & COvy, (34¢)

Proof. Note that the product of a spinor #4 and a dual spinor va4 is given by Yaas2tava,
and the resultant quantity is a vector. From this and the equivalency of 7s4ar and fasr,
we see that the product between each elements of COs and CO¢ has the form of (30a).
Therefore (34a) is true. Similarly, (34b) and (34c) are true. Furthermore, since yaa4- has
the three indices of different type, allowed octonion products are only three types in
(30). Thus this proposition is true. ]

PROPOSITION 9 indicates that there is a remarkable symmetry, the permutation of
degree 3, betwees three complex octonion spaces COy, COs and COc¢. This symmetry
which is peculiar to the eight dimensions is called the principle of triality. From this
principle, we see that, for every proposition, we can obtain further propositions as
covollaries by a permutation of the three types of complex octonions.

5. Pure spinors and null octonions

As was shown by Cartasn?, pure spinors can be generally correlated with maximal null
plane of certain complex Euclidean space. Dimensions of the maximal null planes are
v if such a Euclidean space in 2v- or 2v+1-dimension. Therefore pure spinors in eight
dimensions correspond to totally null four-planes through the origin.
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Let z be a null octonion corresponding to a totally null four-plane through the origin
in COy, i.e.

z:=thhk+tl+tm+ tn < COy, (35)

where f, 4, f and £ are any complex parameters and k, , m and n are constant null
octonions satisfying

N(k) = N(l)=N(m)=N(n)= (36a)
k-l=k-m=k-n=1-m=1-n n=0. (36b)

By virtue of PROPOSITION 3, we can decompose z into the following octonion
product;

zZ=uv, (37)

where, according to PROPOSITION 9, u and v are elements of COs and CO¢, respec-
tively. Then, from PROPOSITION 4, we must have either N(u) =0 or N(v)=0.

Put u= (Ui, U:) and v =( V4, V2), where U,, U, Vi and Vs are complex quaternions.
Now we suppose that u is a constant complex octonion satisfying the null condition
N(u) =0, where N(U,) = —N(Uz) # 0. Then, from PROPOSITION 5, z can be chosen
as follows;

z=ul, (38)
where, from (26a), we have
_v__ 1 7
Putting
I'=yn+In+Jr+Kr (39b)

where 7, 71, 72 and y; are complex parameters, we obtain from (38)
z = vou+ nul + v.uj/ + vukK. (40)
Note that, from N(u) =0, (17) and (19),
N(u)=N(ul)=N(uJ)=N(uK) =0, (41a)
uvul=uu/=uuK=ul-u/=ul-uK=uj ukK=>0. (41b)
Comparing (40), (41a) and (41b) with (35), (36a) and (36b), respectively, we obtain’
kE=u I[I=ul, m=uj/, n=uK, (42a)
=17, h=n, k=7 b=7. (42b)

Thus we can understand that a totally null four-plane through the origin can be
expressed by (38) if and only if u is a null octonion.
On the other hand, if v is a constant complex octonion satisfying the condition N{(v)
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=0 where N(Vi) = —N(V%) #+ 0, then we have

z=Adv, (43)
where 4 is a quaternion consisting of four complex parameters and, from (26b), it is
given by

71 v

This is obvious by the principle of triality.

From the above discussions, we obtain the following proposition.

PROPOSITION 10. Any null octonion which belongs to COs or COc can be ve-
presented, up to proportionality, by a totally null four-plane thrvough the origin in
eight-dimensional Euclidean vector space on which SO(8) acts. Conversely, a null
octonion which belongs to COs or COc¢ determines a totaly null four-plane through the
origin in such a vector space.

According to Cartan’s definition, we call spinors corresponding to the null octonions
which belong to COs and COc¢ pure spinors and dual pure spinors, respectively.
Moreover, totally null four-planes corresponding to pure spinors and dual pure spinors
are called a-planes and B-planes, respectively. (See Figure 1.)

6. Intersections of a-planes and B-planes
The geometric relations discussed in previous section can be further pursued by
making use of the properties of null octonions. Namely, what we discuss in this section
are intersections of «-planes and B-planes.

PROPOSITION 11. Let u and v be null octonions being elements of COs and COc,
vespectively. Suppose that therve exists an intersection of an a-plane and a B-plane given
by such null octonions. Then the intersection is a null line passing through the origin
if and only if uv +0. (See Figure 2.)

Proof. Since an a-plane (38) and B-plane (43) have an intersection, we can put

z=ul"= dv.
From this second expression, (12), (13) and (15), we have
zv=(ul") D
=u(l'v)+[u, I, U]
=u2l'-v—vl)—[u, v,[']
=2u(lr v)—u(vl)—(uv) " + u(vl)
=2u(l-v)—(uv)l.
On the other hand, from the third expression, (19) and N(v) =0, we have

z0 = (4dv) v = AN(v) = 0.
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Fig. 1 An a-plane and a §-plane in eight-dimensional vector space.

Therefore we have
2u(lv)—(uv)" =0.
Multiplying this equation by I" from the right, we obtain
2z(I" v)—uvN(T") =0,
_ N

Sz = rtuv, r:)me C.

This is clearly an equation of null line, with a complex parameter r, passing through
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Fig. 2 The intersection of an a-plane and a B-plane, where uv + 0.

the origin. Thus this proposition is true. L
PROPOSITION 12. Let u and v be null octonions being elements of COs and COq,

respectively. Suppose that therve exists an intersection of an a-plane and a B-plane given

by such null octonions. Then the intersection is a totally null three-plane passing

through the origin if and only if uv =0. (See Figure 3.)

Proof. Similarly to the proof of PROPOSITION 11, we have

22(I'+v)—uvN(I") =0.
Since uv =0 and z #+ 0, we obtain from above the equation
I' v=0.

Therefore, intersection obtained by the assumption uv =0 can be represented by the
equation (38) in which parameters have above linear constraint. Thus this proposition

is true. ]
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Fig. 3 The intersection of an a-plane and a B-plane, where uv = 0.

We call totally null three-planes obtained by intersections of «-planes and S-planes
y-planes.

PROPOSITION 13. Let u be a null octonion being an element of COs and p is a
point of COv. Then there exists a unique B-plane passing through p with property that
it intersects the a-plase given by u in a y-plane.

Proof. From (34b) and (18), we have

vi=uap<sCOc, N(v)=0.

The null octonion v gives clearly a 8-plane passing through p. We have from the above
expression and (19)

uv = u(up) = N(u)p=0.

From this and PROPOSITION 12, the intersection of the «-plane given by u and the
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B-plane given by v is a y-plane. Thus this proposition is true. L]
Note that, from the principle of triality, statements such that COs is replaced to COc¢
and the «-plane in exchanged with the g-plane in PROPOSITION 13 are also true.
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