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This paper analyzes a null curve in complex eight-dimensional space. A general
solution of the null curve is presented. The solution is given by freely speciafiable
three complex quaternions.

1 Introduction

Eight-dimensional complex flat space £2°, compactified and with the usual conformal
structure, can be embedded in ten-dimensional complex Minkowski space with the
metric g = g% = diag (1, —1, —1,..., —1), where the indices a, b,... take the values
of 0, 1, 2,...9. Then a point 2% in 2° can be expressed by a homogeneous coorinates of
CP? satisfying the null quadratic condition

ZQZa - 0 (1)
A null curve in 2%is a world-line z%(s) satisfying following differential equation;
2%, =0, (2)

where s is a real affine parameter and the primed symbol indicates the differentiation
with respect to s. Although it seem easy to solve the equation (2), it is difficult to solve
the equation since it is a nonlinear differential equation.

Recently, Hughston and Shaw" showed that Cartan’s pure spinors? in ten dimensions
provide the solution of (1) and (2). However, since any ten-dimensional pure spinor has
five nonlinear algebraic constraints with respect to its components, it is difficult to
solve their constraints as well as differential equation (2). The purpose of this paper is
to find the general solution of the equations (1) and (2), and show that it has af most
single condition.

In section, 2, we describe briefly Hughston and Shaw’s theorem for the general null
curve in eight dimensions. Section 3 is devoted to solve pure spinor constraints in ten
dimensions by making use of compex octonions and complex quaternions. In section
4, we give again, in terms of three complex quaternions, the general null curve in eight
dimensions. Then we show that this curve has at most single constraint.
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2 Hughston and Shaw’s theorem

Let I'sgand I'*“® be the ten-dimensional reduced gamma matrices, where the spinor
indices A, B,... take the values of 0, 1, 2,..., 15. These gamma matrices satisfy the
Clifford equations

reacrp = g 53, (3)
and the symmetry properties
I'ip = I'sa, 948 = [154, (4)
Furthermore, we have the particular quadratic relations
re® rP? =0, I'tas Tacp = 0. (5)

A ten-dimensional pure spinor is given as the reduced spinor &% satisfying following
conditions¥;

Iis&" £7 = 0. (6)

This is called the purity conditions for the ten-dimensional spinor. Althoght the purity
conditions (6) are in appearance ten conditions, only five conditions of them are really
independent. Therefore a ten-dimensional pure spinor has eleven independent
components®. This comes from the symmetric properties (5) of the ten-dimensional
reduced gamma matrices.

THEOREM (Hughston and Shaw?). Let &* (s) be a pure spinor with a real parame-
ter s. Then a geneval null curve z°(s) in 2° is given by

2¢=1T4 & &% (7)

Since the proof of this theorem is explicitly given by Hughston and Shaw in their
paper?, we do not repeat it in this paper. By the equations (7), we have no restrictions
on the derivatives. However, we have still five nonlinear algebraic constraints (6), that
is, the purity constraints.

3 Ten-dimensional pure spinors represented by three complex quaternions

Any ten-dimensional spinor can be expressed by a pair of complex octonions. This
can be carried out by following processes. Let i; be octonion imaginary units, where
the induces j, k,... take the values of 1, 2, ..., 7. We exchange any ten-dimensional
reduced spinor &% as follows;

A _, ga.__ $0+l‘j Sj
é E —‘( $8+Z'j §j+8 )a (8)

where the indices «a, £,... take the values of 1 and 2. £° is called an octonionic spinor
whose algebraic, geometric and transformation properties are completely investigated
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by many authors®. Uning such an octonionic spinor formulation, we can express the
pure spinor constraints in ten dimensions as follows®;

£eE7 =, (9)

where the symbol bar indicates the octonion conjugate.

Now we should note that any octonion is defined as a pair of any quaternions by the
Cayley-Dickson process”. Therefore, we can write the complex octonionic spinor £% as
follows;

a 1, )
£ = <(Q, - ¢)>, (10

where 11, @, 2 and ¥ are any complex quaternions and the symbol bar indicates the
quaternion conjugate. By (10) and the Cayley-Dickson product, pure spinor constraints
(9) can be rewritten as following complex quaternion equations;

NUD+N(0) =0,

N(Q)+N(¥) = 0.

- 90 =0, (1)
2+ PII = 0,

where N gives the norm of any quaternion. Since the equations (1) are pure spinor
constraints in ten dimensions, only five complex equations of these are independent.
Introducing a new complex quaternion W, we can easily solve the equations (1) as
follows;

Q=W Ur=—0oW. (12
Consequently, we obtain
«_ | I, O)
£ = (( WIT. OW)) (13)
where
NUD)+N(®) = 0. (14)

Thus we can express any pure spinor £* with any three complex quaternions 77, @

and W. Moreover, there are at most single constraint (14 between these three complex
quaternions®.

4 Quaternion formulation of eight-dimensional null curve
According to Hughston and Shaw’s theorem, we can obtain the octonionic spinor
form of an eight-dimensional null curve. From expression (7), we obtain

Zaﬂ — Efa 5_43’ (15)
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where £° = £%(s) is an octonionic pure spinor satisfying (9) and z* = z%(s) is the 2 X
2-octonionic matrix given by

zt ¢
7 z-) (16)
and

2t =2"42% 27 = 2—2° ¢ = Z+ad+... + @2k 17
In convenience, we decompose the complex octonion ¢ into a pair of complex quater-
nions Z,(s) and Z:(s) as follows;

¢ =(Z,, Z»). 19

According to (13), the octonionic pure spinor &% = £%(s) can be constructed by three
complex quaternions I7T = I1(s), ® = @®(s) and W = W(s), where IT and @ satisfy the
condition (14). Differentiating £¢ with respect to s, we have

E—/a — _ _(H,’ Q,)__ —_ (19)
(WH+wil', ©W+ow’) |
Substituting (19 into (15, comparing it with (16 and using (14) and (18, we obtain
2t =NUI')+N(®),
2= = NW)NUT)+N(@))+W-IT'ITW +W o',
Zi=(NUTI")+NON)W +II'[IW + W' O’,
Z,= O Wi+ oWl

20

where the symbol dot indicates the inner product between two quaternions.

In conclusion, we can express a general null curve in eight dimensions by making use
of any three quaternions [1(s), @(s) and W(s) under at most single constraint (14)
between these quaternions.
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