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In this paper we consider the Poincaré gauge theory with one linear and some
quadratic Lagrangians, and investigate the possibility of some exact solutions which
can be derived from the Kerr-Newman solution in Einstein-Maxwell theory. As a
result, we find a series of solutions with two kinds of gauge charges.

1. Introduction

In this paper we consider a Poincaré gauge theory (PGT), which has been first
formulated by Utiyama? and Kibble?, and later extended by Hayashi®. We here adopt
the Lagrangians proposed by Hayashi.

PGT has two gauge fields, a translational gauge field ¢.“ and a Lorentz gauge field
Arms. We here treat these two fields as independent and fundamental fields. For, in this
treatment the Lorentz gauge field can be looked upon as a gauge field in an internal
gauge theory based on the localized Lorentz transformations of the tetrads b.” (= 8"
+c¢x*). From this viewpoint, we recently*® have shown a possibility such that the
equations for the gauge fields can be reduced to the Einstein-Maxwell (EM) equations
via complex Einstein-Yang-Mills (CEYM) equations. Now we here review this briefly
(see also Appendices).

First we introduce the various complex quantities in order to rewrite the equations
for our purpose*: Such as

W, = Tu+ i (1.1)
_EL;S"#U == FP;W + iﬁA#u, (1-2)

where Uu, Gu, & 7w and § 4. are defined as

. def N def 1
Vyl Viayp — AOa#, Ap. Aayp — 7EabCAbC#y (1-3)

* Throughout this paper we use the same notation as those of Ref. [5].
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- def — def
Fru Fp(a);w = Foaw, FAu Fhom = ’%_Eachbcw- (1.4)
Here lower-case latin letters a, b, ¢ -+ mean the internal degrees of freedom and

range over the three values, 1, 2, 3, and €4 is the three-dimensional Levi-Civita symbol
with €123 = 1.

Using above and the analogous quantities, the following two complex equations can
be derived for the Lorentz gauge field (see Appendix A):

T, — iU X T + T+ = B, (1.5)
T, —i U X F =0, (1.6)

Here note the “covariant operator” () is equal to the usual one with the Christoffel
connections, omitting the operation on the internal indices «a, b, ¢ - -

The first equations for our purpose can be obtained from above ones if the following
three conditions are imposed on them:’

[1] U
[II] f#v:‘_%#u
[(III] Ci=C:=Cs=0

where g and j are a certain complex constant and a vector, respectively.
When using conditions [II] and [III], the equations (1.5) and (A.1), together with (1.
6), are reduced at once to the CEYM equations

2aG* = T + Tun™, 1.7

g”";u — l'—i(’u X ?f’w = Q—C‘gw)“, (1.8)
where

Fw=Uop— Up—iAu x A.. (1.9)

Further, when taking account of [I], we can reach the complex EM equations:
g = QE_I’ S un” (1.10)
Fre, =0 (1.11)

where —8?#}'/ = E%#u with %m/ . Q[u,,u — QI/,:,U.
Furthermore, if either of the following (1) or (2) is satisfied, then we are led to the
real or ordinary EM equations:

t Note we are here adopting the condition [III] instead of the condition T, = 0 of Ref. [4].
Because the latter is not a sufficient condition for the translational equation (A.1) to reduce to
the Einstein equation (see Appendix B for details).
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ki 1
(1) %, = Ay (real) and Re|-£-| = 1,
g 2
[1V] 7 .
(2) A, = iBu (pure imaginary) and Re [T} =5
The first of (1) or (2) could restrict considerably the variety of matters, since they force

on Sun* such conditions as
Im[gB"Gm*] =0 or Re[gF -] =0, (1.12)

respectively. We, however, do not have worry about this. In this paper we shall
consider the source-free case only. The second is a requirement, owing to which the
energy-momentum tensor 7(;,*” of the Lorentz gauge field coincides with one of the
electromagnetic field.

Thus we have got a method, by which a special series of solutions in PGT can be
obtained. The procedure is summarized as follows:

1. First, find any solution for the real or ordinary source-free Einstein- Maxwell

equations and identify it with either A or By,

2. next, form the combinations BU.(= U,.) with any complex constant vectors B
belonging to the constraints [IV]-(1) or (2), which give us the linear solutions
(called abelian) of the complex Einstein- Yang-Mills equations,

3. then perform awny local Lorentz-transformations, which ave the local rotations of the
tetrads b** = A*,b™, in order to get a series of monlinear solutions for the
complex Einstein- Yang-Mills equations, and

4. finally, check the condition [11].

In the following sections we treat a concrete example of above procedures. In the
next section we derive Abelian solutions with two kinds of gauge charges @i, @ of the
CEYM equations from the well-known Kerr-Newman solution. In section 3 those
solutions are classified in terms of the invariants S;, S: made from the gauge charges.
In section 4 we consider the nonlinear solutions. There we take up only three typical
cases, namely a null case S; = S, =0 and two cases: (1) @, =0 and (2) @, =0 in
general case. The last section is devoted to the concluding remarks.

2. Abelian solutions

In this section we investigate Abelian solutions to be derived from ones known as
Kerr-Newman solutions in EM theory. It is well-known that Kerr-Newman solutions
are given in the Boyer-Lindquist coordinates as®

ds® = o724 [dt — ¢sin®f dp)* — p*d7'dr?
— 0°dB? — p %sin®0[(#? + ¢*)dp — ddt]? (2.1)
A = Qcos ap*r[dt — ¢sin®8 dp] + Qsin a p % cos [(»* + ¢*)dp — 4dt] (2.2)
where 4 = »* — 2Mr + O+ QF o= r*+ ¢*cos*l,and M, ¢, @ and « are the mass,

angular momentum per unit mass, electromagnetic charge, and complexion of a
source, respectively.
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Following the procedure mentioned in the previous section we can now get two types
of Abelian solutions, corresponding to each case of [IV]-(1), (2). In fact, by making the
replacement of ¢ by either 5[1] = E’Q or ﬁm = iEQ and noting a relation

= R R R .
Q*= —2Re [—Q[é—z]—:l = —29(Qin2” — @Q21.2°) + 49:Q111.21° Qennzy, (2.3)

we can obtain explicitly the solutions for each case of (1), (2) as

ds?nz = 0 dnaldt — ¢ sin®0 dg)?

— P dnaydrt — 0*df? — o7 ?sin®8[(»? + £V)do — ddt)? (2.4)
o = Qpa cos a o 2r[dt — ¢ sin®6 di]
+ Sz sina p2cos O[(#2 + 2)dp — 4dt). (2.5)

Further, noting a relation A2 = Unz2 + idn,2 one obtains from the latter

T = Qiz cos @ o 2r[dt — € sin®6 di]

+ Qi sin @ o2 cos O[(2 + ¢3)dp — ddt], (2.6)
G = Qo cos @ o 2r[dt — ¢ sin?6 d]
+ Qo2 sina % cos O[(#% + 2dp — 4dt). (2.7

Here note that the following substitutions have been made for £ =1, 2

ﬁ[k] = @1(14 + Z'éz[k] (2.8)
= 2
duw = 7 —2Mr + ¢ — 2Re [%&LJ 2.9)

For later discussion it is important to note here the following facts (The indices
[1, 2] will be suppressed hereafter.):
« We have now two kinds of gauge charges @, G, in each case of [IV]-(1) and (2).
« If |@| = |@s| and §;- §» = 0 for each case of (1), (2), then two fields #, @ are equal
in magnitude and mutually orthogonal, and then the structure of spacetime is
Kerr-like, in spite of the presence of the gauge charges.

3. Gauge transformations

Let us now consider the local proper Lorentz transformations. We regard here them
as the local rotations of a vier-bein not associated with any coordinate transforma-
tions. Accordingly, the transformations are defined by A*x(x) satisfying the relations

bk’# — Akmbm#
77km/1kn/1ml = Nni, (31)

where the latter can be derived from the invariance of the metric gu, = brub®..
Under these transformations the gauge charges @, and @, ought to transform as
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Q"l = Eabc(/—fb X /Tc)Ql(a) - ﬁa(ﬁ X éZ)ay

(3.2)

R

6’2 - 75abc(/—fb X /TC)QZ(a) + /_1:1((7 X él)a,

because of relation (2.4). However, the fields o, & are changed by the same transforma-
tions to

U= %Eabc(/_fb X /_fc)l)(a) - /_fa((j X ﬁ)a+(A00 Vv# - Ua/_fav“)dx#’

s

a = %eabc(/—fb X /Tc)a(a) + /Ta([_j X 77)0 + %( ‘7 X 17,# - /_EI X jl.a,#)dx#’ (33)

since the Lorentz gauge field Ann. must transform as
A’km# - AklAmnAln,u + AklAml,p.

Here note the following notations have been used:

Ao | Aoy Ao | (D)

(A%n) = = — = , (3.4)

Ao | — A ~(Pa | —(Ao)a
where the quantities U, V and A, belong to the relations

/Ta'/_fb - Uan + é\ab
/Ta X /Tb = Eabc( UCV — AOO/TC) (3 5)
7 alla  §7%2 __ 2
V — Aoo 3y U - AOO 1

Above the difference on the transformations of charges and fields shows us that the
Lorentz gauge field % can not maintain its original form G after the transformations.
This is a reason why we can obtain the nonlinear solutions for the complex Einstein-
Yang-Mills equations by any local transformations, starting from any solutions for the
Einstein-Maxwell equations. It should be also remarked that the metric dose not
change under any above transformations.

Before going forward, we would like further to remark here a few interesting facts:

(@) @2— Q2 (=S) and Qi+ Q. (=S,) are invariant-quantities of the transforma-

tions.

(b) We can use the scalar S; and S: to classify the fields in terms of the gauge

charges. To do so, it is enough for us to consider the following two cases only:

i. the “null” case: a case where both scalars S: and S, vanish. In this case the
gravitational field is equal to a field which is generated by a body without any
charges, in spite of the presence of the fields 7 and & being created by the
charges.

ii. the general case: a case where S; and /or S; dose not vanish. In this case we
can always choose the charges such as Q) = ¢Q, at any point in spacetime,
where p and ¢ are certain scalars. We shall call this “charge wrench”, corre-
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sponding to the electromagnetic one”. We have two interesting cases for the
wrench. Those are such cases that either of the charges @ or §. vanishes and
therefore S, = 0. The fields are then classified in accordance with Si > 0 or S,
< 0.
In the next section we shall investigate a few solutions obtained by certain special
transformations in both null and general cases.

4. Nonlinear solutions
In this section we investigate nonlinear solutions generated by a spatial rotation and
a boost transformation.

4.1. Solutions generated by a spatial rotation
We know from (3.3) that the fields @, 7 are generally transformed by any spatial
rotations as

17’ = — Aav(a),

N o i 41
ZZJ = *Aaa(a) - %Aa X Aa,u dx# ( )

In this paper we, however, consider exclusively special one of them, i.e., Ay = (84, &,
&r), where &8,, &, &4 are unit vectors along with the directions of », € and ¢. This
rotation is performed concretely according to the following procedure:

» We first set up the 3rd axes of the local frames along with the direction of one of
gauge charges @, Q.. (This is always achieved by a global rotation, because of the
constancy of the charges.)

« We then rotate locally frames so that their 3rd axes coincide with the radial
direction at any points in the spacetime.

1. null case

In this case |@i| = |@,| and Q- Q, = 0. Therefore, we can put generally as @, =
(Qu, @iz, 0) and @2 = (0, 0, @), where Qu1, Q2 and @: are any constants belonging
to a relation Qu° + Qu* = @

A little calculation leads us to the following results:

ds* = o724 [dt — ¢sin*0 dp)? — o*47'dr? — p*db*
— p %sin?O[(#? + A)d¢p — dt)?, (4.2)
with chargeless 4 = »? — 2Mr + ¢% and
"= —(7-81)8p — (U~ &2) &y,
= (3 &3)&, — 8sdl — 23do, (4.3)

Q{ <Y

where we put &; = (1,0, 0), &.=(0,1,0) and &; = (0, 0, 1). As was expected, 7+ a@
= (7-&1)df — sin (7 &2)dp + 0.
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2. general case
(a) the case @ = 0 and @, = (0, 0, Q).
In this case the metric is equal to (4.2) with 4 = »? — 2Mr + ¢* + 2g:1Q-%, and
7 =0,
d = —(d-&3)é, — E4df — &3dp, 4.4)

(b) the case @, = 0 and @, = (0, 0, Q).
The metric is equal to (4.2) with 4 = »* — 2Mr + ¢* — 2¢:Q\%, and
T_))’ = —‘(77' 53)5r,
4.2 Solutions generated by a boost transformation
We here consider only a boost transformation in the &; direction, which is given by

coshn 0 0 —sinh7

0 1 0 0
Akm — 46
(A*n) 0 01 0 (4.6)
—sinhy 0 0 cosh 7

Here 7 is a parameter of the transformation which can depend generally on the
coordinates (¢, », 0, ¢).
After a simple calculation we shall get the following results:

1. null case
As we did so before, we put again @, = (Qu, Qi, 0) and Q. = (0, 0, @) and get

vy = cosh 7 vy, aq = —sinh 7 v,
U= U’(z) = cosh 7 Uy, Zlﬂ e d’(l) S sinh 7 Uy, (47)
V@ = naudx” ae = ags.-

2. general case
(a) the case @, = 0 and Q. = (0, 0, Q).

U’m =0, d’(l) =0,
77’ = Z)’(z) = 0, 67 = 1 a'(z) = O, (48)
U'(a) = N dx*, a'<3> = am).
(b) the case Q. = 0 and @, = (0, 0, Q).
U'u) =0, a'm =0,
Z‘))' = U,(z) = 0, &ﬂ = a’(z) = 0, (49)
Ve = Ve + pudx” as = 0.

Finally, we must check the condition [1I]. However, we already know that all above
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solutions can always exist in a model of PGT with the parameters Ci = Ce = Cs = 0
and (B.4). But it is also easily conceivable that some rare solutions of them could be
in other models. In this paper, however, we do not consider this possibility, though it
will be discussed in other chance.

5. Concluding remarks
In this paper we have presented some special solutions of Poincaré gauge theory

being compatible with Einstein equation. These solutions have been created from the

Kerr-Newman solution of Einstein-Maxwell equations by means of the local Lorentz

transformations. It is a feature that they have two kinds of gauge charges, in terms of

which they can be classified. We find also an interesting fact. It is a fact that our
solutions are divided into three categories, according as the properties of the associ-
ated-space-times. They are as follows:

» The space-time is Kerr-like, i.e, it is equal to one generated by a body with no
charges, in spite of the presence of the Lorentz gauge field (which is created by the
charges).

» Gravity has a post-Newtonian limit such that the redundant force is repulsive.

 Gravity has a post-Newtonian limit such that the redundant force is attractive.

Appendix
A. The complex Einstein-Yang-Mills equations

We are adopting the Lagrangian proposed by Hayashi®, from which we can get the
following two equations and Bianchi identity in PGT?

2aG*" = Tun™ + Tw)™ + Tic)™, (A.D)
Vkamnp + Kkarmnp + Kmrkarnﬁ + ][km]n — S(M)kmn’ (AZ)
Dot 1 Kk, FTme 4 K R — ) (A.3)

Let us now show how we can obtain the equations (1.5) and (1.6) from the equations
(A.2) and (A.3). To do so, we must first note that we assume [7.b.* = 0. Then noting
4%, = K*,, — A*,, we can get at once the following equations from (A.2) and (A.3):

Hkm’w;y + Akarm#u + Amekr/w + [[km]# — S(M)‘""“, (A4)
FHm, + AT 4 AT FT4 = ), (A.5)

Here, in place of [, we have used an operator (;u). This operator does not operate on
the internal indices k, m, - -+ - and just in this point (;x) differs from I7,.. After all, (;x)
is essentially equal to General-Relativistic covariant operator with the Christoffel
connection.

In order to rewrite above equations for our purpose, we must introduce the complex
quantities £, F ', 3* and Eu* corresponding to H ™, Ftemev  [lkmle gnd Ghme

respectively. These quantities are made from the corresponding ones in the same way

t We are here adopting the notation of Appendix B of Ref. [5].
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as " is done from F*™ Using these quantities, above equations can be written as

_Jjﬁu;y - i@fu X 755;”# + §# = @(M)#, (AG)
?{”‘U:u - i@fu % §T#u = 0. (A?)

These equations imply that we may adopt the following equation in place of the first
of above pair:

T, — iU, x T + J4 =B, (A.8)
where
To= 5% — (hy + )™ (A.9)

with % and % being real any constants.

If we now assume a condition with a complex constant g

TH :E%W’ (A.10)

which is just the condition [II], and one more condition
J* =0, (A.11)

then we can get from (A.17) and (A.7) the complex Yang-Mills equations

Ty — % X T = a8, (A.12)

@b”‘u:u - iﬁ)u X ?:-s_’nw =0 (Alg)
with

?S:‘w - @fu,y - @f,u,u - Z@f;‘ X ﬁ’u. (A14)

However, it should be remarked that above equations can not yet be thought of as
complex Einstein-Yang-Mills equations. Because the condition (A.20) is equivalent to
I ™" — ( rather than 7™ = 0, so that the equation (A.1) can not be identified with the
Einstein equation. Thus we here, instead of (A.20), adopt more stringent conditions

Cl - Cz - C3 - 0, (A15)

which result from (A.20) when it must be satisfied by any fields. In this case we have
I = () and therefore Ti¢,*” = 0. In addition, we can see from (A.4) that the antisym-
metric part of 7.)*” vanishes automatically when the condition [II] is fullfilled. Thus
we can reach the complex Einstein-Yang-Mills equations, whenever the condition [II]
and [III] are satisfied.

B. The supplementary conditions
B.1. The condition [II]

We first note that our condition [II] can be written in the ordinary form as
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Himnp = GiFwmnp + G2 Famnp + MF  emnp + 2" F ' amnp (B.1)

with

0o

TFb.mn;: Ern” Famp,

I

,
Fun" €qmp,

SR
-+ -

x> 3

3 3

qr -t
p Ekm F qmp,

I

© |

a1 + 192 (¢1, g» = real any constants).

It would be useful for a later calculation to write these conditions in terms of the
irreducible spinors @iscp, @Pas, Xiicp and /A, by which the corresponding spinor
Fiscpercn of Famnp is defined as®

Fiscoerce = { ¥sorn + Osucor + Oorepu + A(eprepn + €suEDF)}EACERC
+ {Wicsc + Qicecs + Dcpcic + NA*(eice€cé + €icecE)} EppErn
+ Xicruerp€ic + XppEGEACEFH. (B.2)

After lengthy calculation we shall find the followings:

(8az — 1 + h2 + (g2 + M)} ¥aser = 0,

2as — g1+ he + (g2 + M)} Pas = 0,

{2(a1 + 6as) — 1 + h2 + g + )N — 2(a, — 6as)/T: 0,
{2as + as — g1 — h2 — (g2 — M)} Xiseo — (2as — as)Xcpiz = 0

(B.3)

In particular, when above conditions must be satisfied by any fields, we are led to the
relations

g2 =0, =0
g =2a + as), h:=2as— as, (B.4)
da) = 3a, = 2a4 = 24as = 0,

2as = as.

Additionally, it may be fruitful to compare our conditions with the well-known
double duality ansatz of E.-W. Mielke et al. Following the strategy of Belavin et al.?
in the search for instanton solutions of Yang-Mills equations, E.W. Mielke and his
collaborators (called hereafter Germany group) have introduced their double ansatz
and its modified versions (which can be reviewed in Refs. [11,12]) as a means of
reducing the differential order.

The generalized double duality ansatz can be written in our notations for the
analogous models to ours, i.e., quasi-linear PG models without the constant term (~ A1),
as follows:
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(az - 8§)WABCD = 0,
(@ — 128)@as = 0,
(Cla + 65) (XAéCD — XCDAE) =0,
(as + 12 é) (XAI}CD + Xcpis) = 0,
(a— 6&)(A— 1) =0,

1

48[02(616— SE)(A-F/T):Z}’—?

77

(B.5)

Here & = &/24x, and 4, x, & y and x are the notations of Germany group. Our
parameters «, B, ¥ and a, a: (i = 1~6) correspond to their parameters a;, b; ( = 1~

3, 7 = 1~6) in the following manner:

o b
SR SN S
. = gl
B.2. The condition [III]
First of all, we consider a more general condition S . = —(M?/G) & . which has been
adopted in Ref. [4]. This condition is equal to
Lizmin = _MT2Kkmn, (B.7)
where M and G are arbitrary real constants. Using the relations
Tumin = —2{C Gy + Cottnis Emi + 5 CormnsS?) (B.8)
and
Kimn = _%T@n[km] — %”n[kv@:m + %ekmnpA@p, (B.9)
we can see easily that above conditions are equivalent to the followings:
3G+ 2y G = 0, (B.10)
3C: + MTZ)V@:;. =0, (B.11)
4GCs — Lﬂéz)A@k = 0. (B.12)

Here we note that these conditions can be satisfied by any fields if
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6M*
G .

9C1 - 18C2 = —8C3 = — (B.13)

Our condition [III] is just a special case of them, i.e., a case M = 0. In this case Tic)*™
vanishes automatically because of I*™ = (. Accordingly, the equation (A.1) can be
identified with the Einstein equation having as the sources the symmetric energy-
momentum tensors of a matter and the Lorentz gauge field'?.
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