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Abstract

This paper mainly presents the reasoning method in our consulting system in order
to predict how many credits the students can get. It is necessary to use a prior
knowledge obtained by the grade data of the students. So we adopt the probabilistic
logic model due to Niki” in this sense. Numerical results for actual grade data in our
university are shown.

1. Introduction

It seems that there exist students who repeat a year by which choosing courses are
not appropriate in many universities. If academic advisors give proper guidance to the
students, then some of them can graduate smoothly for four years. To such students
they want to predict the number of courses which are given credits and further advise
to get the number of necessary credits or courses which each university stipulates.

We construct a consulting system that accomplishes their purpose, namely, it
predicts the number of courses which are given credits on course cards that they turn
in and advises them which courses they take.

The approaches for reasoning under uncertainty, Bayes rule?, the certainty factor
method? used in the system MYCIN, subjective Bayesian method® used in the system
Prospector, Dempster-Shapfer theory*, probabilistic logic®, fuzzy theory® and so on,
are well known. In particular we adopt probabilisitic logic from a viewpoint of making
use of prior knowledge in our problem.

In this paper, we apply probabilistic logic due to Niki” based on the maximum
entropy principle in the sense of Kullback-Leibler® to the prediction of the number of
courses which are given credits. For 81 students who matriculate in 1987 in university,
we predict the number of courses which are given credits and compare them with their
actual grade data.
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2. Model

A certain student turns in course cards at the beginning of the first semester or the
second semester. It is our problem that we predict, on these cards, how many credits
he can get. These cards also lead us to two kind of prior knowledge as follows:

1. prior knowledge about the trend that each teacher gives credits,
2. prior knowledge about his past grade.

The trend means whether the degree that each teacher gives credits is high or not.

Firstly we classify 54 teachers in our university into five groups from a viewpoint of
the degrees that each of them gives credits. Cluster analysis based on further neighbor
method with Mahalanobis distance is also applied to this classification and its results
are shown in Table 1. If there are » teachers in group 7 and each of the degrees which
these teachers in this group give credits is x; (/ = 1,-++,n), then the degree giving
credits is 23/, x;/n, and the ratios are each ratio of the number of teachers in group
7 to 54 teachers in our university.

Secondly his past grades given by the teachers in each group are known. Thus we
look up the number of courses given by the teachers in each group and count up the
number of courses which are given credits in every group.

Prior knowledge about his grade is updated with that he moves up to the next grade.
Therefore we want to use this knowledge for prediction at the next grade, positively.
From making use of the above prior knowledge we apply Niki’s probabilistic logic
model to our problem or to obtain the information how many credits a certain student
can get.

3. Probabilistic logic
We define propositions X, Y and Z as follows:

1]

X = “A certain student takes the course given by teachers in group (7 = 1,-++5)”,
Y = (A teacher in group ¢ gives credits”,
Z = “A certain student can get credits”.

Under the circumstances C that a certain student turns in course cards, we estimate
us =Pr(Z|C) when uy = Pr(X|C) and u; = Pr(Y|C) are known. For example, if a
certain student takes ten courses and the number of courses given by teachers in group
1 is two, then wuois 2/10 = 0.2 and w; is 0.9127 from Table 1.

Table 1 The degree giving credits and the ratio of teachers in each group

The degree giving credits the ratio of teachers
The teachers in group 1 0.9127 0.13
The teachers in group 2 0.4406 0.11
The teachers in group 3 0.8685 0.34
The teachers in group 4 0.6903 0.14
The teachers in group 5 0.8758 0.28

(On 54 teachers in our university)
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Table 2 Probabilistic logic model

Mo M M, M, M, Ms Ms M

X 0 0 1 1 0 1 o
Y 0 0 1 1 0 0 1 1 231
zZ 0 0 0 0 1 1 1 1 Uz
17 o m T2 0 0 0 0 el
P Do 2 D3 0 0 0 0 D7

Table 2 represents all possible truth values (#7u#e is 1 and false is 0) for (X Y Z). {Mo,
-+« M7} are the sets of events corresponding to different vectors of values. A discrete
distribution P = {py,* - -, ps} is each component of which represents the probability that
the actual event is a member of M; and given by

p: = Pr{M; is true|C} (i1 =0,---,7) (1)

and intervening knowledge is a discrete distribution /7 defined on the set of M; with the
probabilities

i = Pr{M; is true} (i =10,-+-,7). (2)

This distribution /7 approximates, as prior knowledge about P, to that by P. In our
problem we may regard knowledge about his grade in the past as /7. In Table 2, the
semanticklly consistent sets of truth values and corresponding sets of events are
clearly {Mo M, M, M;}. The set of event M-, for example, can be interpreted into
M, — “A certain student takes the course given by a teacher in group ¢ and this

teacher also gives credits of the course, so he can get this credits”.
Then the distribution P is satisfied with

ps=ps=ps = ps = 0, po+m+p+p+ L (3)

In order to estimate u, represented by p;, the maximum entropy estimate P of P can
be obtained by minimizing the Kullback-Leibler information

7
I(P;T) = 2(p dogp: — p dogm) (4)

for discrimination of P from 71, subject to the constraint (3), where we assume 0Olog( =

0.

4. Numerical results

This reasoning method is applied to a certain student who matriculate in 1987 and
predicts the number of courses that he is given credits, on the course cards turned in
by him at the first semester of third-grade for every group. In the case of this
prediction, we make use of his grade from first-grade till second-grade. In Table 3 and
Table 4, A means the number of courses which he takes, B means the number of
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Table 3 Example 1

A B C
Group 1 1 1 1.000
Group 2 2 2 0.461
Group 3 9 8 8.466
Group 4 1 1 0.790
Group 5 2 2 2.000
Total 15 14 12.717

Table 4 Example 1

A B C
Group 1 0 0 0.000
Group 2 0 0 0.000
Group 3 5 4 4.796
Group 4 2 0 1.705
Group 5 4 2 3.744
Total 12 6 10.245

Table 5 The errors between grade data and the our predicting

results
# 1 2 3 4 5 total
the number of 59 12 7 9 1 81
students
ratio 0.72 0.15 0.09 0.03 0.01 1.00

(on 81 students who matriculate in 1987)

courses which he is given credits, and C means the product of %, and A or our predict-
ing value. Table 4 represents that C does not fit B, when the ratio of B to A is low.

Next we apply to 81 students who maticulate in 1987 and predict the number of
courses which each student is given credits at the first semester of third-grade. For
each student, we use

# =int max|B: — Ci, (5)
1sis5

in order to look up the errors between B; and C,, where 7 is group 7, B; is the number
of courses that he get and C; is the product of #; and the number of courses which he
takes, and its results are shown in Table 5.

If this error (= #) is one or two courses and it is valid as the predicting result to our
problem, then 87 9 students are included among this error.

5. Conclusion
We construct the model that predicts the number of courses given credits by
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applying probabilistic logic as the reasoning method on prior knowledge, that is,
knowledge about the trend that each teacher gives credits and his past grade.

Our purpose is accomplished for 879 students, when we predict, for 81 students who
matriculate in 1987 at the first semester of third-grade, the number of courses which
each of them gets.

Furthermore we need to work the approaches to the case as Table 4 in order to get
better predicting results. As one of the approaches to solve this problem we consider
modifying prior knowledge with increasing grade data.
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