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Let R be a Noetherian integral domain and R[X] a polynomial ring. Let ¥ be an
element of a field extension L of the quotient field K of R. If y € L is transcendental
over R, then R[y]NK = R, and if y € K then R[y]NK = R[y]. So we consider an
element algebraic over R.

We study the following problem:

Problem Let R be a Noetherian integral domain, let K denote the quotient field of
R and let @ be an algebraic element over R of degree d. When does R[a] K = R ?

In what follows, we use the following notations unless otherwise specified.

R : a Noetherian integral domain,
K := K(R) . the quotient field of R,
L = an algebraic field extension of K,
@ : a non-zero element of L,
d =[K(a): K],
0 X) =X+ nX* "'+ -+ + 54, the minimal polynomial of a over K.
Lo = N%i(R : #7:), which is an ideal of R.
I.: = R:r aR for a € K.
It is clear that for ¢ € K, Iy = I, by definition.

We also use the following standard notation:
Dpi(R): = {p € Spec(R)|depth R = 1}.
Throughout this paper, all fields, rings and algebras are assumed to be commutative
with unity. Our special notations are indicated above, and our general reference for
unexplained technical terms is [M].

We start with the following definition.
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Definition 1. When R[e]NK = R, we say that « is an exclusive element over R and
that R[] is an exclusive extension of R.

Proposition 1. If R[e]NK = R, then Nt IS I,.

Proof. Note that a* + 71a* ' + -+ + 5. = 0. Take @ € N1, Then apa = —(aa® +
ama®™ ' + - + aga-1a) € Rla]NK = R. Thus a € I,,, which means that
Nt L. o

Let 7 : R[X]— R[a] be the R-algebra homomorphism sending X to «. The element
@ is called an anti-integral element of degree d over R if Ker 7 = Ly (X)R(X).
When ¢ is an anti-integral element over R, R[a] is called an anti-integral extension of
R. (See [0OSY] for details) For f(X) € R[X], let C(f(X)) denote the ideal generated
by the coefficients of /(X), that is, the content ideal of f(X). Let Jia;: = Iia)C(pa( X)),
which is an ideal of R and contains I.;. The element « is called a super-primitive
element of degree d over R if Jioy & p for all primes p of depth one. It is known that
a super-primitive element is an anti-integral element (See [OSY] for details).

Corollary 1.1. Assume that a is super primitive over R. When (&, + I, = R, the
Jfollowing statements arve equivalent:

(i) a is exclusive over R i.e., R[¢]K = R,

() N € L.

Proof. (i) = (i) : By [OSuY, Proposition 13], we have R[e]NK = R[(N¢=!L) 7] = R
because (N¥=il,)7s < R.
(i) = (ii) follows from Proposition 1. O

By [OSuy, Proposition 9], we have the following result:

Corollary 1.2. If Iy = R, then Rla]NK = R. Moreover if a is super-primitive over
R, then I,, = R implies R[e¢]NK = R.

The following lemma is very elementary, but we give a proof for convenience.

Lemma 2. Let f(X) < R[X] be a monic polynomial and let ¢(X)< K[X]. If
F(X)g(X) is a monic polynomial in R[X], then g(X) € R[X].

Proof. Put A(X)=X"+aX" '+ -+ a, with &; € R and ¢(X) = &EX" + - +
&m with & € K. Since f(X)g(X) monic, we have & = 1. Assume that & = 1,8, &1
€ R and & & R. Then the coefficient of the degree (¢ + n)-termis & + a1&-1 + -+ +
% € R. Hence & € R, a contradiction. Thus {; € R for all /. So we have g(X) € R.

[m}
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Proposition 3. (cf. [OSY, (2.2)]) Assume that R is normal. Then « is integral over R
if and only if [,) = R.

Proof. (=): Since R is normal, ¢.(X) € R[X] by [M,9.2)]. By [0SY, (1.13)], « is
super-primitive and hence anti-integral because R is a Krull domain. Hence o = R
follows from [OSY,(2.2)].

(&) : Since lia) = R, we have Ker 7 = [iypa( X)R[X] = 0o(X)R[X]. Thus ¢u(a) =0
gives rise to an integral dependence. So « is integral over R. m

Corollary 3.1. Assume that R is normal, If « is integral over R, then a is an exclusive
element over R.

Proof. By Proposition 3, Ijs) = R and hence R[a]NK = R by Corollary 1.2. O

Proposition 4. [f N1, = R and ais exclusive over R i.e., R[e]\K = R, then
Rla] is integral over R.

Proof. By Proposition 1, (M¢!1,; S I,a and hence o) = (N¢1l,: = R. Thus 71,*,74 €
R, which means ¢.(X) € R[X] and ¢.(@) = 0. This yields that « is integral over R.
O

In [OY,(1.3)], we see that if @ € K is both integral and anti-integral over R then «
€ R. For the case d > 0 we have a similar result as follows.

Theorem 5. If a is both anti-integral and integral over R, then a is exclusive over R,
i.e., Rla]NK = R.

Proof. Since a is integral over R, there exists a monic polynomial f/(X) € R[X] such
that /(@) = 0. Since « is anti-integral over R, we have Ker © = Iisjp.(X)R[ X]. Hence
f(X) € Ker 1 =Laypo(X)R[X]. So there exists a polynomial g(X) € I;qR[X] such
that /(X) = @.(X)g(X). Since f(X) and ¢.(X) is monic, g(X) is monic. Thus ¢4(X)
€ R[X] by Lemma 2, which showes that [, = R. Therefore R[e]K = R by
Corollaryl.2. O

Proposition 6. There exists a non-zero element a & R\{0} such that aa is exclusive
over R.

Proof. Take a & I[g\{0}. Then @u(X) = a%0(X) = (aX)*++ a’ns € R[X].
Hence lqea; = R implies that R[aa](NK = R by Corollary 1.2. o

Lemma 7. Let a be a non-zero element in R. If a is exclusive over R, then a is also
exclusive over R[1/al.
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Proof. Since R[1/a] is flat over R, we have:

(R[a]NK)®=rR[1/a] = RQ=rR[1]/a],
Rla]®rR[1/a] N KQrR[1/a] = R[1/a],
R[1/alle]NK = R[1/al.

Definition 2. Let

E(a) = {a € R|R[1/alle]NK = R[1/al}U{0}.

As is seen in the next theorem, E(a) represents the obstruction ideal of exclusiveness
of a.

Theorem 8. E(a) is a radical ideal of R.

Proof. Let b= R and a € E(a). Note here that R[1/(ab)] = R[1/a,1/b]. Hence
R[1/(a®)][eINK = R[1/a)[1/b][e¢]NK. Since R[1l/al[e]NK = R[1/a], we obtain
R[1/a][1/6][e]NK = R[1/a][1/b] by Lemma 8. Hence R[1/(ab)lalNK = R[1/a,
1/6)[a]NK = R[1/a,1/b] = R[1/(ab)], which shows ab & E(a). Next take a,b €
E(a). Let £ € R[1/(a + b)lla]NK. Then for sufficiently large integer ¢, we have (a
+ b)¢ € R[e]NK S R[1/al[e]NK = R[1/a] and similarly (a + 8)’¢ € R[a]NK <
R[1/b][e]INK = R[1/b]. Thus we have R[1/(a + b)]la] & R[1/a]lNR[1/b]. Now we
must show that R[1/a]NR[1/b]=R[1/(a + b)]. Take &€ € R[1/a]NR[1/b]. Then & =
c/a” = d/b™ for some c¢,d € R and for some integres »n,m. Take ¢ > 0, e.g. £ > 2Max
{n,m}. Then(a + b)¢ = a’(c/a™) +---+ b*(d/b™) € R. Hene &£ & R[1l/a(a + b)].
Therefore R[1/(a + b)][e]NK € R[1/a]NR[1/b]1< R[1/(a + b)], which means
R[1/(a + b)][e]NK < R[1/(a + b)]. So we conclude that a + b € E(a). We have
shown that E(a) is an ideal of R. It is clear that E(a) is a radical ideal of R. o

The next Corollary 8.1 follows from the definition immediately.
Corollary 8.1. The following statements ave equivalent:
(i) E(a) =R,

(i1) a s exclusive over R.

Theorem 9. The following inclusions hold:

I[a] c E(C[) c VIfld: m‘ii;lllvn

Moveover if a is super-primitive over R, then I,, S E(a).

Proof. Take p & Spec (R) with Iiy & p. Then Rpla]NK = R, by Corollary 1.2.
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Hence E(a)» = Rp, which means E(a) & p. Since E(a) is a radical ideal, we have I,
€ E(a). Next take p € Spec (R) with E(a) € p. Then R[a](\K = R». By Proposition
1, we have (N 1)y S (Ira)p. Hence (1, : N4H,)» = Rp, which yields that I, : M
I, € p. Thus E(a) € VI, : M¢11,. The second part follows from Corollary 1.1. O

Corollary 9.1. If E(a) #+ R, then there exists p € Dp(R) such that E(a) < p.

Proof. Suppose that E(a) & p for all p € Dp(R). Then R,[a] K = R, and hence
R[a]ﬂK & mpenm(R)Rp[OZ]mK = mpeum(me = R. Thus R[a}ﬂK = R, which shows
E(a) = R. o

The following corollary is seen immediately from Proposition 9.

Corollary 9.2. If @ is exclusive over Rp for each p & Dp(R), then a is exclusive over
R.

Corollary 9.3. @« is exclusive over R[1/a] for any a € L) \{0}, i.e., R[1l/alla]lNK =
R[1/al.

Proof. By Theorem 9, I;s) € E(a), so that R[1/alle]NK = R[1/al. a]
Concerning the converse of Proposition 1, we have the following special result.

Proposition 10. Assume that a is a super-primitive element of degree 2. Then
R(elNK = R if and only if I, S I,.

Proof. We must prove the if-part by Proposition 1. By Corollary 9.2, we may assume
that R is a local domain (R,m) of depth one. When I,, € m, 7. € R.

Since «a is super-primitive over R, we have R[a](NK = R by Theroem 9. Next we
consider the case I,, S m. Then I, = I, (\ I, = I, by the assumption. Since « is
super-primitive over R, Iio is a principal ideal by [OSY,(1,12)]. So i« = aR = I, for
some a € R. In this case, 71 = b/a and b & m because if b € m then I,, contains aR
properly. Hence we may assume that b = 1. Since @ € Iy C I, yields g.(X) = X* +
(1/a)X + (c/a) for some ¢ € R. Hence by [OSuY, Remark in § 3], we have R[a]NK
= R. o
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