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In this article, we will be concerned with the following second order linear evolution
equation

iW(t) + p(HAu(t) + Au(t) =0, (1)

where ¢ = 0 or @ = 1, and investigate the asymptotic behavior of solutions of (1) as ¢
— oo, In a special case, Equation (1) represents a linear wave equation with damping
term in which the case « = 0 and the case @« = 1 respectively correspond to the first
order damping and the third order damping (cf. [3]).

In what follows, we impose the following conditions on (1):

(H1) p: R*— R*, R":= [0, ), is a continuous function.

(H2) A is a linear operator in a real separable Hilbert space H with dense domain
D(A) which is self-adjoint and positive definite with discrete spectrum {A,}5-1; here 0
<ALAL - <AL -0 and limyee An = oo.

By (H2), there exists a complete orthonormal system {e,} in H such that Ae, = A.ex
for n =1,2,----. For each u € H, we have an expansion

u = n;ldneny an = (U, en)H

with ||ul4 = Zlai, where ( , )» denotes an inner product of H. For each 8 = 0, we

define the operator A”: D(Af) — H by
D(A*) = (2 anen: 3 (Man) < oo}
Afu = g'.l/iﬁanen, U = glanen € D(A*).

A’ is a closed linear operator in H, and D(A*) equipped with the norm |«ls: = | A%«

is a real Banach space. When u € D(A*) with u = Z}lanen, we get

lulls = {3 (2han)?) @)
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If 3 < v, then D(A”) C D(A*) and the canonical inclusion map from D(A?) into D(A?)
is continuous. For any nonnegative integer £ and any Banach space X, we denote by
C*(R*; X) the set of all X-valued functions which are continuously differentiable up
to order £ on R™.
Definition. A#n H-valued function u(t) on R* is said to be a solution of (1), if
= C(R+ : D(A1+a)) m Cl(R+ : D(A(1/2)+a)) m CZ(R+ ,H)
and u(t) satisfies (1) in H for t € R*.

In what follows, we shall study the asymptotic behavior of solutions of (1) in
connection with the asymptotic stability property of an ordinary differential equation

() + Aip(t) y (2) + Aay(t) = 0 (1n)
for n =1, 2, ----. The zero solution of (1) is said to be asymptotically stable, if each

solution y(#) of (1) satisfies lim:-« [|¥(#)| + [y (#)]] = 0.

Theorem. Assume Conditions (H1) and (H2). Then the following statements ave
equivalent:

(i) The solution u(t) of (1) with u(0) € D(A'™?) and u(0) €& D(AY®**) satisfies
lee(Ollr/2yse + | (E)le =0 as t — oo.

(i) For each n =1,2,----, the zero solution of (1n) is asymptotically stable.

In order to establish the theorem, we need the following proposition.

Proposition. Assume Conditions (H1) and (H2). If u: R*— H is a solution of (1)
with u(0) € D(A'™®) and 1(0) € D(AY?*®), then the coefficients an(t), n=1,2, -,
n the expansion

Z{(t) = gldn(t)en 3)
satisfy the following two conditions:
(€D S an0)? + (2 an(0))) < co.

(C2) an(t) is a solution of (Ex) for each n=1,2,----.
Conversely, if an(t), n=1,2, -, satisfy (C1) and (C2), then the function u defined
by (3) is a solution of (1).

Proof of Proposistion. Let «: R*— H be a solution of (1), and consider the

expansion #(t) = g)}bn(z‘)en. Then b.(t) = (2 (t), en)n = (dldt)u(t), en)n = aa(t),
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and hence u(¢) = gla'n(t)en. Similarly, we can get #i(¢) = g‘,léin(t)en. Then (C1)

follows from (2) because of #(0) € D(A'**) and #(0) & D(A"Y?*%). Moreover, we
obtain that

dn(t) + A5p(2) an(t) + Anan(t) = (i (), en)u + p(t)(0(t), A%n)u + (u(t), Aen)y
= (i (t) + p()Au(t) + Au(t), en)u = 0,

which shows (C2).

Conversely, assume that a.(¢), n = 1,2, - - - -, satisfy (C1) and (C2), and consider the
function «(¢) defined by (3). Since p(¢) = 0, we have (d/dt){(A?a.(¢))* + (Ga(£))3) =
—2A5p(t)(aa(t))? < 0, and hence

(A%an(1))? + (an(8))* < (A%an(0))* + (G.(0))% t >0; 1,2, +---. (4)
Then ni:}l{(A,‘z*”an(t))z + (AP a,.(8))% < gl{(/l}ﬁ“an(()))z + (AP 44(0))*} < © by
(C1), and consequently w«(t) = g‘,]an(t)en e D(A"™?) and v(t): = g}dn(t)en e

D(AY?**) for t > 0.

Claim 1. « € C(R*; D(A'™®) and v € C(R*; D(AY2+9)),
For any € > 0, select an integer N > 0 so large that

2 a0 + (P70 da(0) < e/, (5)
which is possible by (C1). Then
lee(t) — u( D = 2 “(an(t) — an( D)
< DA (an(t) — a D)

+2, 31 Ao au(0) + (A an DY

IA

SHAF(an(t) — an( D))

n=

—

+4 3 (a0 + (A2 d,(0))?)

n +1

N —
< ngl{/i},*“(an(t) —an(t))?} + ¢
by (4) and (5). Thus limsup.-z|lz(¢) — 2(#)|}+« < €. Because e is an arbitrary

positive number, one gets lim,-:|u(¢) — u(? )i+« =0, and hence u € C(R*;
D(A'?)). In a similar way, one can get v € C(R* ; D(A%Y?*9)).

Claim 2. #‘; u(t) = v(t) in D(AYP*%); that is,
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H u(t + h;l— u(t) (1) 2

(1/2)+a

— 0 as h— 0. (6)

For any € > 0, let NV be the integer. selected in the proof of Claim 1. Then the left
hand side of (6) is evaluated as:

15 Rt + )~ ) — hinF

IH

— L\. nMs

I

[f (Gn(8) — Gn(1)}dB)?

/1”2“\ an(8) — an(t)*dé|

t+

IA

IA
T

An 2 an(8) — an(t)db)

+h

;
= ﬁMz nMs

+ | 3 A an(O)F + |an( ) db)

z SN

< max{ 2 A da(0) — d@a(t): 1t — 6] < |hl)

oo

+4 3 (A aa.(0))? + (A4P*9 4,(0))%]

n=N+1

< max {g‘lA}ﬁ“lczn(e) — an(OP: |t = 0] <K} + e,

and hence (6) follows from the above inequality and the continuity of d.(#).
From Claims 1 and 2, we see that « € C(R*; D(A"™%) N CY(R*; D(AY?*%)). It
remains only to show that (d/dt)v(t) = — Au(t) — p(¢t)A°(¢t) in H; that is,

[ALE B =20 4 ay(s) + p a0~ 0 as h 0. ™

Let € and N be the same ones as in the proof of Claim 2. We can assume Ay = 1. The
left hand side of (7) is evaluated as:

S an(t + h) — ant) + hdnan(t) + WAEH(E) an(t)]?
| [ 1n(0) + dnanl) + a50(0) dn)}]
| [ antan(t) — an(0)) + 2801 a() — p(B) (BN} 6|

(

N Ny

[ [+
iMs iMs

Ms

S anane) = an(0)) + 20 a(8) — 2(0) an( 0Dl

3
Il
—

[ Elnlant) — ano))Tat)

+ 12 [ S ane) — p(0)an(@)dl]

oo

+ ‘% N+1[< np(t)an(t)) + (Anp(l9>dn(6)) de‘
= :]l(h) + [(h) + IS(h) ‘,: . I(h)).

By Claim 1, v € C(R*; D(A'®) C C(R*; D(A)), and hence I{" —0 as h— 0,
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because of the inequality
2 t+h -
I < ‘Wf loe(t) — u(e)u%de{ < 2max {le(t) = w(O|}: |t — 6] < |hl}.

Moreover, since p(¢)adn(t) is continuous in ¢ = 0, it is easy to see that " — 0 as & —
0. On the other hand, since 1 < Ay < A, for » = N, we get

159 < 5[0 + 0 db|, B [ a0 + (8 aa(0))]
< emax {p(2)* + p(6)?: |t — 6| < |h|}.

Hence lim supr-o I < e max {p(#)* + p(8)*:|t — 6| < 1}, which shows limu-o i¥ =
0. This completes the proof.

Now we prove the theorem.

[(i)— (ii)]. Take any natural number #, and let a.(¢) be any solution of (1,). Then
u(t) : = an(t)en is a solution of (E) with #(0) € D(A"?) and #(0) € D(AY?*?) by
Proposition. Then |u(#)|az+a + |2(£)la— 0 or |a(¢)| + |dn(t)]— 0 as t — oo, which
shows that the zero solution of (1,) is asymptotically stable.

[(ii) — (i)]. Let u(¢) = ’glan(t)en be any solution of (1) with #(0) € D(A'**%) and

u(0) € D(A"?*9). By virtue of Proposition, a.(¢) is a solution of (1,) for each »n = 1,

2, -+ ++. Since the zero solution of (1.) is asymptotically stable, one gets
lan(t)] + [a@n()| = 0 as t = o (8)
for each » =1, 2, ----. For any € > 0, select a positive integer N so large that Ay =

1 and (5) holds. By virture of (4), we obtain

l(B)tvpra + @ (Dle = ZIAPan())? + (AFaa(1))]

= g][(/l;”’”an(t))z + (Afa(1))?]

+ =
=N

n

[(Ax"*@a(0)® + (AP @4(0))°]

+1

< Z[G an( D) + (Uanl)F] + <,

and hence limsup:-w [|u(#)[Pa2+a + |2 (2)3] < €/4 by (8). Since e is an arbitrary
positive number, we thus obtain lime-« [|2(#)f1/2+a« + |22(#)[3] = 0, completing the
proof.

Hatvani and Totik [4] have recently generalized a classical result due to Smith [7]
which provides a necessary and sufficient condition for the zero solution of (1,) to be
asymptotically stable. Combining our theorem with Hatvani and Totik’s result, one
can obtain the following result which has recently been proved by Zhang [8] in a
different manner in case of @ = 0, H = L* Q) (£ is a bounded domain in R” with the
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smooth boundary) and —A = g&z/axf + k (k£ is a constant) with the Dirichlet bound-

ary condition.

Corollary 1. Assume Conditions (H1) and (H2), and moreover assume that
. . t+48
(H3) hmlnft—me[ p(s)ds > 0 for each 5 > 0.
Then the condition (i) of Theovem is equivalent to the following condition:

(H4) lwexD{—ASP(t)}<£texp{ﬂ;7P(3)} dS> =co,n=12-+-"",

where P(t) = '/O‘tj)(s) ds.

While it seems to be rather difficult to check the condition (H4) in practical cases,
the following result provides a flexible criterion for the condition (i) of Theorem.

Corollary 2. Let p(t) = € > 0, p continuous, and assume Condition (H2) and one of
the following conditions;

(H5) 1/p(t) is of bounded variation.

(H6) p(t) is differentiable and —Af < p(t)/p*(t) < K (K; a constant).
Then the condition (i) of Theorem is equivalent to / wa’t/p(t) = oo.

In fact, applying [2, Theorem 3] one can easily see that the condition (H4) is
equivalent to f wa’t/p(t) = oo under the assumptions of the corollary. Then the corol-

lary is a direct consequence of Corollary 1.

Finally, combining Theorem with a result in [5] or [6], we obtain the following
result which provides a sufficient condition for the condition (i) of Theorem to hold
true. In fact, it is an almost best possible (computable) result because the condition (H7)
cited below holds true when 0 < p(t) =0(t-logt) as t — oo, while 1 + (£ + 1) is a
solution of (1n) with p(¢) = {(e + 1)/(# + 1) + At + 1 + (¢ + 1)) /e}/A% for € > 0
(cf. [1]).

Corollary 3. In addition to (H1) through (H3), assume the following condition;

(H7) there exist a sequence of positive numbers {s.} and a positive constant d such

that sni1i — sn<d n=12 -+, and that ’/S'snwp(s) ds > 0 for all n and
oo Sn+d -1
ngx[[;. #(s) ds] =

Then the condition (i) of Theorem holds true.



Notes on Asymptotic Stability Property for Second Order Linear Evolution Equations 7

References

1)

2)

3)

Z. Artstein and E. F. Infante, On the asymptotic stability of oscillations with unbounded damping,
Quart. Appl. Math., 34, (1976), 195-199.

R. J. Ballieu and K. Peiffer, Attractivity of the origin for the equation ¥ + 7 (¢, x, #) |#|*% +
g(x) =0, J. Math. Anal. Appl., 65 (1978), 321-332.

T. A. Burton, The nonlinear wave equation as a Liénard equation, Funkcial. Ekvac., 34 (1991), 529
-545.

L. Hatvani and V. Totik, Asymptotic stability of the equilibrium of the damped oscillator,
Differential & Integral Equations, 6 (1993), 835-848.

S. Murakami, Asymptotic behavior of solutions of ordinary differential equations, Tohoku Math.
J., 34 (1982), 559-574.

L. H. Thurston and J. S. W. Wong, On global asymptotic stability of certain second order
differential equations with integrable forcing terms, SIAM J. Appl. Math., 24 (1973), 50-61.

R. A, Smith, Asymptotic stability of x” + a(#)x’ + x = 0, Quart. J. Math. Oxford Ser. (2), 12
(1961), 123-126.

B. Zhang, Asymptotic behavior of solutions of a nonlinear damped wave equation, submitted for
publication.



