Spinor Formalism to the Poincaré Gauge Theory

Shin-ich NAKARIKI

Department of Applied Physics, Okayama University of Science,
Ridai-cho 1-1, Okayama 700, Japan
(Received September 30, 1987)

On the base of the invariance of a system under the Poincaré gauge transformations, five identities are obtained according to Nöther's theorem. Using some of these identities and field equations, a different approach to the Poincaré gauge theory by means of a spinor formalism is presented.

§ 1. Introduction

Since the gauge theory of gravity was first formulated by Utiyama\(^1\) in 1956 on an invariant property of system under the local Lorentz transformations, the gauge theory on space-time symmetries has been investigated by many authors\(^2\)\(^-\)\(^10\).

Poincaré gauge theory on the base of a symmetry of system under the local Poincaré transformations (hereafter called Poincaré gauge transformations) was first studied by Kibble.\(^2\) He introduced two kinds of gauge fields, i.e., the translation \(c_k\)\(^a\) and the Lorentz \(A_{km}\)\(^a\) gauge fields, to keep a system invariant under the Poincaré gauge transformations. However, he assumed only the Lagrangian linear in the Lorentz gauge field strength by analogy with Einstein gravity. This type Lagrangian does not contain any kinetic terms for the Lorentz gauge field. Accordingly, the Lorentz gauge field was not a propagating field in his theory.

Against it, Hayashi\(^3\) proposed the most general Lagrangian quadratic or less in the first derivatives of \(c_k\)\(^a\) and \(A_{km}\)\(^a\), and suggested the existence of propagat-
ing massive as well as massless gauge fields.

In this paper we shall adopt the Lagrangian proposed by Hayashi, and develop an argument in terms of spinors instead of usual tensors.

A spinor technique adopted here has been growing up with general relativity,\textsuperscript{19)–16) and especially used successfully to the study of gravitational radiation.\textsuperscript{17)–20) Accordingly, it seems that a spinor formalism is more useful for an argument of propagating massless gauge fields. (Under this formalism we will investigate the possible existence of massless Lorentz gauge fields propagating with positive energy in linear field approximation in the forthcoming paper.)

In § 2 we recapitulate Kibble-Hayashi's method, and deduce five identities according to Noether's theorem.\textsuperscript{21) § 3 is devoted to preparations for spinor approach. In § 4 we present a spinor formalism to Poincaré gauge theory. The last section is devoted to concluding remark.

§ 2. Preliminaries

As preparations to later section, we review briefly the Poincaré gauge theory in this section.

2.1. Action we consider a set of matter fields

\[q = \{ q^A/A = 1, 2, \cdots, N \} \] with the Lagrangian density

\[L_M = L_M (q, q_{,k}) \] \hspace{1cm} \[(q_{,k} = \partial q/\partial x^k) \]

The action \(\int d^4x L_M \) is assumed to be invariant under Poincaré group.

Let us now postulate the invariance of the action under Poincaré gauge transformations which are defined by replacing ten parameters in ordinary Poincaré transformations by arbitrary functions of the coordinates: *)

\[\delta x^\mu = \xi^\mu (x) \] \hspace{1cm} \[(2.1.1) \]

\[\delta q (x) = (i/2) \omega_{km}(x) S^{km} q(x) \] \hspace{1cm} \[(2.1.2) \]

Here \(\xi^\mu (x) \) and \(\omega_{km}(x) \) are ten arbitrary infinitesimal functions of the coordinates, and the \(S^{km} \) are six infinitesimal generators of the Lorentz group, satisfying the commutation relations

\[[S^{km}, S^{lp}] = i (\eta^{kn} S^{mp} + \eta^{mp} S^{kn} - \eta^{kp} S^{mn} - \eta^{mn} S^{kp}) \] \hspace{1cm} \[(2.1.3) \]
We use the Greek indices for the coordinate indices and the Latin indices, for the local Lorentz indices. The Latin indices are raised or lowered with the flat-space metric $\eta_{\mu\nu} = \text{diag.}(1, -1, -1, -1)$.

In order to keep the action invariant, the derivative q_μ must be replaced by the "covariant" one $D_\mu q$ in the original Lagrangian density L_M. Here $D_\mu q$ is defined by introducing the two gauge fields, that is, the translational gauge field c_μ^ν and the Lorentz gauge field $A_{\mu\nu} (= - A_{\nu\mu})$, namely

$$D_\mu q = b_\mu^\nu \left(q_{,\nu} + (i/2) A_{\mu\nu} S^{\nu\mu} q\right)$$

with

$$b_\mu^\nu = \delta_\mu^\nu + c_\mu^\nu.$$

The field b_μ^ν, which is defined in terms of c_μ^ν, is called the vier-bein or tetrad field.

The Poincaré gauge-invariant action is given by

$$I_M = \int d^4x \ L_M(q, D_\mu q),$$

where $L_M = b L_M(q, D_\mu q)$ with $b = - \det(b_{\mu\nu})$.

The field $b_{\mu\nu}$ is the inverse of $b^{\mu\nu}$, satisfying

$$b_{\mu\nu} b^{\nu\rho} = \delta_\mu^\rho, \quad b_{\mu\nu} b^{\mu\rho} = \delta_\nu^\rho.$$ (2.1.6)

The two field strengths $G_{\mu\nu\rho}$ and $F_{\mu\nu\rho}$ for the translation and Lorentz gauge fields are obtained by calculating the commutator $(D_\mu D_\nu - D_\nu D_\mu) q$. We easily find

$$(D_\mu D_\nu - D_\nu D_\mu) q = (i/2) F_{\mu\nu\rho} S^{\rho\mu} q + G_{\mu\nu\rho} D_\rho q$$ (2.1.7)

where

$$G_{\mu\nu\rho} = C_{\mu\nu\rho} + 2 A_{(\mu} A_{\nu)\rho},$$ (2.1.8)

$$F_{\mu\nu\rho} = 2 (A_{\mu\nu\rho} + A_{\mu\rho} A^{\nu\rho}) b_{[\nu}^\mu b_{\rho]}^\nu,$$ (2.1.9)

with

$$C_{\mu\nu\rho} = 2 b_{\mu\nu}, \quad A_{\mu\rho} = b_{[\mu}^\rho b_{\nu]}^\nu.$$ (2.1.10)

We adopt the standard convention that round brackets around indices denote that the symmetric part is being taken and square brackets, the antisymmetric part.

The Poincaré gauge-invariant action for the gauge fields is determined in terms of the two field strengths $G_{\mu\nu\rho}$, $F_{\mu\nu\rho}$ by

$$I_G = \int d^4x \ b^\nu \left(\alpha^T C_{\mu\nu\rho} T C_{\mu\nu\rho} + \beta^T \gamma^A C A C A \gamma^A C A \right).$$
\[a_i A_{knp} A^{knp} + a_2 B_{knp} B^{knp} + a_3 C_{knp} C^{knp} \]
\[+ a_4 E_{mn} E^{km} + a_5 G_{mn} G^{km} + a_6 F^2 + aF \] \hspace{1cm} (2. 1. 12)

where \(a, a, \beta, \gamma \) and \(a_i \) \((i = 1, 2, \cdots, 6)\) are constant parameters (only five of six parameters \(a_i \) are independent)\(^9\) and \(\tau E_{knn}, \cdots; A_{knp}, \cdots, F \),

which are the irreducible components of Lorentz (local) 4-tensors \(E_{knn} \) and \(F_{knp} \),

respectively, are defined by

\[\tau E_{knn} = E_{(knn)} - (1/3) (\eta_{km} \tau E_n - \eta_n (k \tau E_m)), \] \hspace{1cm} (2. 1. 13)

\[\tau E_{k} = E_{m mn}, \] \hspace{1cm} (2. 1. 14)

\[\tau E_{k} = (1/3) ! \varepsilon_{knp} E^{mnp}, \] \hspace{1cm} (2. 1. 15)

and

\[A_{knp} = (1/6) (F_{knp} - F_{knp} + F_{kpm} - F_{mnp} + F_{npk} - F_{nmp}), \] \hspace{1cm} (2. 1. 16)

\[B_{knp} = (1/4) (D_{knp} - D_{knp} + D_{mpk} + D_{npm} + D_{nmk}), \] \hspace{1cm} (2. 1. 17)

\[C_{knp} = (1/2) (D_{knp} - D_{npm}), \] \hspace{1cm} (2. 1. 18)

\[E_{kn} = F_{(km),} \] \hspace{1cm} (2. 1. 19)

\[G_{kn} = F_{(km)} - (1/4) \eta_{kn} F \] \hspace{1cm} (2. 1. 20)

with

\[F_{kn} = \eta^{np} F_{knp}, \]

\[F = \eta^{km} F_{km}, \] \hspace{1cm} (2. 1. 22)

and

\[D_{knp} = F_{knp} - (1/2) (F_{kn} \eta_{mp} + F_{mp} \eta_{kn} - F_{mn} \eta_{kp}) \]
\[- F_{kp} \eta_{mn} + (1/6) (\eta_{kn} \eta_{mp} - \eta_{kp} \eta_{mn}) F. \] \hspace{1cm} (2. 1. 23)

Here \(\varepsilon_{knp} \) is a completely antisymmetric Lorentz tensor

and \(\varepsilon^{0123} = 1, \varepsilon_{0123} = -1 \).

When making use of the identity\(^*\)

\[- R = (2/3) \tau C_{knn} \tau C_{mn} - (2/3) \tau C_{k} \tau C_{m} + (3/2) \tau C_{k} \tau C_{k} \]
\[+ b^{-1} (2b b^{mu} \tau C_{m}, \mu), \] \hspace{1cm} (2. 1. 24)

then the above action (2. 1. 12) will be rewritten in more useful form

\[I_0 = \int d^4x \{ a R + L_\varepsilon + L_F + (2a b b^{mu} \tau C_{m}, \mu) \} \] \hspace{1cm} (2. 1. 25)

where

\[L_\varepsilon = b L_\varepsilon = b (c_1 \tau E_{knn} \tau E_{mn} + c_2 \tau E_{k} \tau E_{m} + c_3 \tau E_{k} \tau E_{k}) \] \hspace{1cm} (2. 1. 26)

with

\[c_1 = \alpha + (2/3) a, \]
\[c_2 = \beta - (2/3) a, \]
\[c_3 = \gamma + (3/2) a, \]
and
\[L_F = bL_F = b(a_1A_{kmnp}A^{kmnp} + a_2B_{kmnp}B^{kmnp} + a_3C_{kmnp}C^{kmnp}) + a_4E_{km}E^{km} + a_5G_{km}G^{km} + a_6F^2). \]
\[(2.1.27) \]

Combining \(I_M \) of (2.1.5) and \(I_G \) of (2.1.25), we get the Poincaré gauge-invariant action for the whole system:
\[I = I_M + I_G \]
\[= \int d^4x \left(L + \langle 2abb^{\mu\nu}C_m, \mu \rangle \right) \]
\[(2.1.28) \]

with
\[L = bL = L_M + abR + L\epsilon + L_F. \]
\[(2.1.29) \]

2.2. Field equations \hspace{10mm} From the action \(I \) of (2.1.28), we get the three field equations by the variational principle.

One of them is that for a matter field \(q \), which is determined with the concrete expression for \(L_M \).

\[\ast \] \hspace{10mm} \(R \) is a Riemann scalar curvature defined by the metric \(g_{\mu\nu} = b,_{\mu}b,^{\nu} \), and \(C_{kmn} \), etc., are the components of \(C_{kmn} \) just defined like as \(\epsilon C_{kmn} \), etc.

Another one is that for the field \(b,_{\mu} \):
\[2aG^{km} = - T^{km} \]
\[(2.2.1) \]

where \(G^{km} \) is an Einstein tensor \(G_{\alpha\beta} = (R_{\alpha\beta} - (1/2) g_{\alpha\beta} R) \) in local form, and \(T^{km} \) is a local form\(^*\) of the energy-momentum tensor \(T_{\mu\nu} \) for a whole system except for the Einstein gravity, namely
\[T^{km} = b,_{\mu}b,^{\nu}T^{\mu\nu} = T^{(M)}_{\alpha\beta} + T^{(\epsilon)}_{\alpha\beta} + T^{(F)}_{\alpha\beta} \]
\[(2.2.2) \]

with
\[T^{(M)}_{\alpha\beta} = D_{\mu}D^{\mu}q - \eta^{km}L_{\epsilon}, \]
\[(2.2.3) \]
\[T^{(\epsilon)}_{\alpha\beta} = \nabla_{\alpha}l^{km} + K_{\alpha\beta}l^{(mr)} + \eta^{km}L_{\epsilon}, \]
\[(2.2.4) \]

and
\[T^{(F)}_{\alpha\beta} = F_{km}l^{km} - \eta^{km}L_{F}. \]
\[(2.2.5) \]

Incidentally, the conservation law of energy-momentum can be then expressed in the form
\[\langle a(\tau^{\mu\nu} + \tau^{\nu\mu}), \mu = 0 \rangle, \]
\[(2.2.6) \]
\[\tau^{\mu\nu} = b^k T^{\mu\nu} , \]

\[\tau^{\mu}_{\nu} = \frac{\partial G}{\partial b^k} \delta_{\nu}^k , \quad b^k, \quad \nu = \delta_{\nu}^\nu G . \]

\)

The transposition of any tensor with coordinate indices (called world tensor) into the local form (called Lorentz tensor) is generally performed by using the field \(b^k \).

\(*\) \(T^{km} \) is essentially symmetric, because of the Lorentz gauge invariance of system.

Here \(G \) is a part of \(bR \), not containing the second derivatives of \(g_{\mu\nu} \).

The remainder is that for the Lorentz gauge field \(A_{km\mu} \):

\[\nabla_p H^{kmnp} + \Delta^k_{\tau\rho} H^{mnp} + \Delta^m_{\tau\rho} H^{knp} = - S^{kmn}, \quad (2.2.7) \]

where \(S^{kmn} = (S^{kmn} b^k) \) is a spin-angular momentum tensor for a whole system:

\[S^{kmn} = S_{(M)}^{kmn} + S_{(c)}^{kmn} + S_{(F)}^{kmn} \quad (2.2.8) \]

with

\[S_{(M)}^{kmn} = \frac{\partial L^M}{\partial A_{km\mu}} = (i/2) b^\mu_1 \frac{\partial L^M}{\partial D_1 q} S^{kmq} , \quad (2.2.9) \]

\[S_{(c)}^{kmn} = \frac{\partial L^c}{\partial A_{km\mu}} = b_1^\mu I^{(km) n} , \quad (2.2.10) \]

and

\[S_{(F)}^{kmn} = \frac{\partial L^F}{\partial A_{km\mu}} = b_1^\mu b_1^\nu (H^{kmnp} A^m_{\tau
u} - H^{mnp} A^k_{\tau\nu}) , \quad (2.2.11) \]

and in terms of it, the conservation law of spin-angular momentum can be described in the form

\[(b S^{kmn})_{\nu} = 0 . \quad (2.2.12) \]

Here \(I^{kmn} \), \(H^{kmnp} \), and their "covariant" derivatives \(\nabla_n I^{kmn} \) and \(\nabla_p H^{kmnp} \) are defined as follows:

\[I^{kmn} = 2 \frac{\partial L^c}{\partial \xi_{kmn}} = 4 c_1 \xi^{kmn} \xi^l + 4 c_2 \eta^{kmn} \xi^l \]

\[- (2/3) c_3 \xi^{kmnp} \xi^l p , \quad (2.2.13) \]
\[H_{kmnp} = 2 \frac{\partial L}{\partial F_{kmnp}} = 4 a_1 A^b_{kmnp} + 4 a_2 B^b_{kmnp} + 4 a_3 C^b_{kmnp} \]
\[+ a_4 (E_{kn} \eta_m^p + E_{mn} \eta^{kn} - E_{kn} \eta_m^p - E_{mn} \eta^{kp}) \]
\[+ a_5 (G_{kn} \eta_m^p + G_{mn} \eta^{kn} - G_{kn} \eta_m^p - G_{mn} \eta^{kp}) \]
\[+ 2 a_6 (\eta^{kn}\eta_m^p - \eta^{kp}\eta_m^n) F \] (2. 2. 14)

and
\[\nabla_n I^{kmn} = I^{kmn}_n - \Delta^k_{rn} I^{rmn} - \Delta^m_{rn} I^{krm} - \Delta^n_{rn} I^{kmr}, \] (2. 2. 15)
\[\nabla_p H^{kmnp} = H^{kmnp}_p - \Delta^k_{rp} H^{rmnp} - \Delta^m_{rp} H^{krmn} \]
\[- \Delta^n_{rp} H^{kmpn} - \Delta^p_{rp} H^{kmnr} \] (2. 2. 16)

with
\[\Delta^k_{kmn} = \Delta^k_{kn\mu} b^{\mu}_{n} = (1/2) (C_{kmn} + C_{mnk} + C_{nkm}) \]
\[= - \Delta_{mkn}. \] (2. 2. 17)

The “covariant” derivative \(\nabla_k \) is generally defined by
\[\nabla_k q = b^k_{\mu} \nabla_{\mu} q, \]
\[\nabla_{\mu} q = q_{,\mu} - (i/2) \Delta_{\mu\nu} S^{mn} q. \] (2. 2. 18)

Then the “covariant” derivative \(D_k \) of (2. 1. 4) is related to the \(\nabla_k \), using the relation \(A_{kmn} = K_{kmn} - \Delta_{kmn} \): (2. 2. 19)
\[D_k q = \nabla_k q + (i/2) K_{mkn} S^{mn} q \] (2. 2. 20)

with
\[K_{kmn} b^{\mu}_{n} = (1/2) (C_{kmn} + C_{mnk} + C_{nkm}) \]
\[= - K_{mkn}. \] (2. 2. 21)

2.3. Identities The action I of (2. 1. 28) is invariant under the Poincaré gauge transformations, even if the divergence term is neglected. From this invariance of the action I, the following identities are obtained in accordance with Noether’s theorem: \(^{2)}\)
\[\nabla_p F^{+kmnp} + K^p_{kmn} = 0, \] (2. 3. 1)
\[\nabla_n C^+_{kmn} - K_{km} C^+_{mn} = - F^+_{kmn}, \] (2. 3. 2)
\[\nabla_p R^{+kmnp} = 0, \] (2. 3. 3)
\[R^{+kmnp} = 0 \] (2. 3. 4)

and
\[F^{k}_{rmnp} H^{rmnp} - F^{m}_{rmnp} H^{krmn} = F^{m}_{rmnp} H^{krmn} - F^{k}_{rmnp} H^{rmnp}, \] (2. 3. 5)

where it should be noticed that the Poincaré gauge invariance is preserved, even
if any of $L_M, abR, L_{(c)}$ and L_F is substituted for L in the action I, and that + symbol on the right-above of F, C and R stands for the right duals of them, e. g.,

$$F^{+kmp} = (1/2!) F^{kmp} \varepsilon_{rs}^{np}, \text{ etc.}$$

*) It should be remarked that the "covariant" derivatives of $\eta_{km}, \varepsilon_{kmp}$ and their associates, i.e., $\nabla_n \eta_{km}, \nabla_r \varepsilon_{kmp}, \text{ etc.}$, are all zero.

Substituting (2.2.19) for A_{kmn} in F_{kmp}, F_{kmp} is resolved like

$$F_{kmp} = R_{kmp} + F_{kmp} (K) \quad (2.3.6)$$

with

$$R_{kmp} = 2 \left(\Delta_{kmn} \mu + \Delta_{kn} \mu \Delta_{mv} \right) b_n^{[\mu} b_{p}^{\nu]}$$

(2.3.7)

and

$$F_{kmp}(K) = \nabla_n K_{km} - \nabla_p K_{kmn} + K_{krn} K'_{mp} - K_{kmp} K'_{rmn}. \quad (2.3.8)$$

§ 3. Spinor Approach

In this section, we shall obtain the expressions (2.2.1), (2.2.7), (2.3.1) and (2.3.8) written out in terms of spinors. The next some subsections are devoted to preparations to do so.

3.1. Fundamental spinor We consider the so-called spinor as a vector (called spin-vector) in spinor space S_2 which is a two-dimensional linear vector space over the field of complex numbers with an antisymmetric inner product, and with a conjugate space S_2^{\ast} associated with it. An any order spin-tensor is then defined in the same way as the ordinary tensor.

An n-th order spin-tensor is also called a spinor of n-th rank, simply a spinor in the case that there is no danger to be confused.

We denote the contravariant component of a spin-vector u in any frame of reference in S_2 by $u^A (A = 0, 1)$, and the corresponding of the conjugate u^* by $u^{\dot{A}} (\dot{A} = \dot{0}, \dot{1})$. Then their covariant components u_A and $u_{\dot{A}}$ are respectively got by

$$u_A = u^B \varepsilon_{BA} \quad \text{and} \quad u_{\dot{A}} = u^{\dot{B}} \varepsilon_{\dot{B}A}, \quad (3.1.1)$$

making use of the fundamental spinors ε_{AB} and $\varepsilon_{\dot{A}B}$, which can be selected to
be
\[\varepsilon_{\dot{A} \dot{B}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \varepsilon^{\dot{A} \dot{B}}. \] (3.1.2)

Conversely, when the covariant components \(u^A \) and \(u^\dot{A} \) are known, their contravariant components \(u_A \) and \(u_\dot{A} \) are introduced by
\[u^A = \varepsilon^{AB} u_B \quad \text{and} \quad u^\dot{A} = \varepsilon^{\dot{A} \dot{B}} u_\dot{B}, \] (3.1.3)
where \(\varepsilon^{AB} \) and \(\varepsilon^{\dot{A} \dot{B}} \) are the inverse of \(\varepsilon_{AB} \) and \(\varepsilon_{\dot{A} \dot{B}} \), respectively:
\[\varepsilon^{AB} \varepsilon_{BC} = \varepsilon^{A}_C = -\delta^A_C = -\delta_c^A \] (3.1.4)
and the same one with dotted indices.

We shall often use the following relations involving the fundamental spinor:
\[\varepsilon_{AB} \varepsilon_{CD} + \varepsilon_{CA} \varepsilon_{BD} + \varepsilon_{BC} \varepsilon_{AD} = 0, \] (3.1.5)
\[\xi_A \varepsilon_{BC} + \xi_B \varepsilon_{CA} + \xi_C \varepsilon_{AB} = 0, \] (3.1.6)
\[\eta_{AB} - \eta_{BA} = \eta_{\dot{A} \dot{B}} \varepsilon_{\dot{A} \dot{B}}, \] (3.1.7)
where \(\xi_A \) and \(\eta_{AB} \) may be arbitrary spinors of any rank.

Lastly, it should be noted that the norm of any spinor of odd rank is zero, because of the antisymmetry of the fundamental spinor. For example,
\[\xi_A \xi^A = \varepsilon_{AB} \xi^A \xi^B = -\xi^A \xi_A = 0. \]

3.2 Spinor equivalents of tensors

The correspondence between tensors and spinors is obtained by making use of a mixed quantity \(\sigma^k_{\dot{A} \dot{B}} = b^k_\mu \sigma^k_{\dot{A} \dot{B}} \), where \(\sigma^k_{\dot{A} \dot{B}} \) is algebraically determined by the following equations:
\[\sigma^{k\dot{A} \dot{B}} = \sigma^{k\dot{B} \dot{A}} \] (3.2.1)
\[\sigma^{k\dot{A} \dot{B}} \sigma^{m \dot{A}}_c + \sigma^{m \dot{B}}_c \sigma^{k \dot{A}}_c = \eta^{km} \varepsilon_{BC}. \] (3.2.2)

The spinor equivalent of any tensor is a quantity which has a dotted and an undotted spinor index for each tensor index. For example, the spinor representing the tensor \(F_{\mu \nu} \) \((= - F_{\nu \mu}) \) (which is assumed to be real, and hereafter we shall treat only with real tensors) is given by
\[F_{\dot{A} \dot{B} \dot{C} \dot{D}} = F_{\mu \nu} \sigma^\mu_{\dot{A} \dot{B}} \sigma^\nu_{\dot{C} \dot{D}} \] (3.2.3)

Conversely, the tensor \(F_{\mu \nu} \) is expressed in terms of its spinor equivalent \(F_{\dot{A} \dot{B} \dot{C} \dot{D}} \)
\[F_{\mu \nu} = \sigma^\mu_{\dot{A} \dot{B}} \sigma^\nu_{\dot{C} \dot{D}} F_{\dot{A} \dot{B} \dot{C} \dot{D}}. \] (3.2.4)

The spinor \(F_{\dot{A} \dot{B} \dot{C} \dot{D}} \) has the symmetry
\[F_{\dot{A} \dot{B} \dot{C} \dot{D}} = - F_{\dot{C} \dot{D} \dot{A} \dot{B}}. \] (3.2.5)
because of the antisymmetric property of the tensor $F_{\mu\nu}$, and as a result, we obtain the identity

$$F_{\hat{A}\hat{B}\hat{C}\hat{D}} = (1/2) (F_{\hat{A}\hat{B}\hat{C}\hat{D}} - F_{\hat{C}\hat{B}\hat{A}\hat{D}}) + (1/2) (F_{\hat{C}\hat{B}\hat{A}\hat{D}} - F_{\hat{D}\hat{C}\hat{A}\hat{B}}).$$

Applying (3. 1. 7) to two terms in the right-hand side, this identity can be also rewritten

$$F_{\hat{A}\hat{B}\hat{C}\hat{D}} = \varepsilon_{\hat{A}\hat{C}} \phi_{\hat{B}\hat{D}} + \varepsilon_{\hat{B}\hat{D}} \phi_{\hat{A}\hat{C}}, \quad \text{(3. 2. 6)}$$

where

$$\phi_{\hat{A}\hat{B}} = (1/2) F_{\hat{E}\hat{A}} \hat{E} \hat{B} = -(1/2) F_{\hat{E}\hat{B}} \hat{E} \hat{A} = (1/2) F_{\hat{E}\hat{B}} \hat{E} \hat{A} = \phi_{\hat{B}\hat{A}}. \quad \text{(3. 2. 7)}$$

The spinor $\phi_{\hat{A}\hat{B}}$ is symmetric. On the other hand, taking the complex conjugate of $\phi_{\hat{A}\hat{B}}$ gives

$$\phi_{\hat{A}\hat{B}} = (1/2) \left[F_{\hat{E}\hat{A}} \hat{E} \hat{B} \right]^{*} = (1/2) F_{\hat{A}\hat{E}\hat{B}}^{*},$$

because of the reality of $F_{\mu\nu}$ and the Hermitian property (3. 2. 1) of $\sigma^{\mu\nu}$. We thus see that the antisymmetric tensor $F_{\mu\nu}$ is equivalent to a symmetric spinor $\phi_{\hat{A}\hat{B}}$. Incidentally, it is well-known that a symmetric spinor with two indices describes a vector field.

We are now in a position to consider the spinor equivalents of field strengths $F_{k_m n_p}$ and $\mathcal{C}_{k_m n_n}$. From their definitions, it is easily known that the fields $F_{k_m n_p}$ and $\mathcal{C}_{k_m n_n}$ have the following symmetry properties:

$$F_{k_m n_p} = -F_{m_k n_p} = -F_{k_m p_n}, \quad \text{(3. 2. 8)}$$

and

$$\mathcal{C}_{k_m n_n} = -\mathcal{C}_{k_m n_n}. \quad \text{(3. 2. 9)}$$

Because of these symmetry properties, following the procedure outlined above for the tensor $F_{k_m} \left(= b_k^{\mu} b_m^{\nu} F_{\mu\nu} \right)$, we see that the field strength $F_{k_m n_p}$ is equivalent to three kinds of spinors, $\Psi_{\hat{A}\hat{B}\hat{C}\hat{D}}$, $X_{\hat{A}\hat{B}\hat{C}\hat{D}}$, $\Phi_{\hat{A}\hat{B}}$ and one complex scalar Λ, and the field strength $\mathcal{C}_{k_m n_n}$, equivalent to two types of spinors, $\psi_{\hat{A}\hat{B}\hat{C}\hat{D}}$ and $\varphi_{\hat{A}\hat{B}}$. Here $\Psi_{\hat{A}\hat{B}\hat{C}\hat{D}}$ and $\Phi_{\hat{A}\hat{B}}$ are completely symmetric in their all indices, and $\psi_{\hat{A}\hat{B}\hat{C}\hat{D}}$, in its three indices B, C, D.

On the other hand, $X_{\hat{A}\hat{B}\hat{C}\hat{D}}$ is an irreducible spinor having the symmetry:

$$X_{\hat{A}\hat{B}\hat{C}\hat{D}} = X_{\hat{B}\hat{A}\hat{C}\hat{D}} = X_{\hat{A}\hat{B}\hat{D}\hat{C}}. \quad \text{(3. 2. 10)}$$

Finally, it should be remarked that an irreducible spinor $\varphi_{\hat{A}\hat{B}}$ is equivalent to a
complex vector, or real two vectors.

By actually performing calculations, we find out

\[V C_{\lambda \beta} = -3 (\phi_{\lambda \beta} + \phi_{\beta \lambda}) \]

and

\[A C_{\lambda \beta} = -i (\phi_{\lambda \beta} - \phi_{\beta \lambda}), \]

where \(V C_{\lambda \beta} \) and \(A C_{\lambda \beta} \) are the spinor equivalents of the irreducible components, \(V C_k \) and \(A C_k \) of \(C_{kmn} \), and \(\phi_{\lambda \beta} \) is the complex conjugate of \(\phi_{\lambda \beta} \).

*) The spinor equivalent of a local tensor is defined by using the quantity \(\sigma^k \lambda \beta \) for \(\sigma^\mu \lambda \beta \).

In terms of these spinors, the spinor equivalents, \(F_{\lambda \beta \epsilon \delta \epsilon \gamma \delta} \) and \(C_{\lambda \beta \epsilon \delta \epsilon \gamma \delta} \), of \(F_{kmnp} \) and \(C_{kmn} \) are represented by

\[
F_{\lambda \beta \epsilon \delta \epsilon \gamma \delta} = \{ \Psi_{BDHF} + \Phi_{BH} \epsilon_{DF} + \Phi_{DF} \epsilon_{BH} \\
+ \Lambda (\epsilon_{BF} \epsilon_{DH} + \epsilon_{BH} \epsilon_{DF}) \} \epsilon_{A\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \\
+ \{ \Psi_{A\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} + \Phi_{\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \epsilon_{CD} + \Phi_{CD} \epsilon_{\lambda \gamma \epsilon \delta} \\
+ \Lambda^* (\epsilon_{\lambda \gamma \epsilon \delta} \epsilon_{\epsilon \delta \cdot \gamma \cdots} + \epsilon_{\epsilon \delta \cdot \gamma \cdots} + \epsilon_{\epsilon \delta \cdot \gamma \cdots}) \} \epsilon_{BD} \epsilon_{FH}
\]

\[+ X_{\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \epsilon_{BD} \epsilon_{\epsilon \gamma \epsilon \delta} + X_{BD\epsilon \cdot \gamma} \epsilon_{A\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \epsilon_{FH} \]

(3.2.13)

and

\[
C_{\lambda \beta \epsilon \delta \epsilon \gamma \delta} = \{ \Psi_{ABDF} + \Phi_{\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \epsilon_{\lambda \beta} + \Phi_{\lambda \beta} \epsilon_{F} \} \epsilon_{\epsilon \delta} \\
+ \{ \Psi_{B\beta \epsilon \cdot \epsilon \gamma \epsilon \delta} + \Phi_{B\epsilon \cdot \gamma} \epsilon_{\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} + \Phi_{B\epsilon \cdot \gamma} \epsilon_{\lambda \epsilon \cdot \epsilon \gamma \epsilon \delta} \} \epsilon_{DF}.
\]

(3.2.14)

where \(\Psi_{\lambda \beta \cdots} \), \(\Phi_{\lambda \beta} \), \(X_{\lambda \beta \cdots} \) and \(\Psi_{\lambda \beta \cdots} \) are the complex conjugates of the corresponding quantities.

3.3 Spin-connection

In this subsection, we consider the "covariant" derivative \(\nabla^\mu \) of a spinor.

In such a case that a matter field \(q \) is a spin-vector \(u_A \), we see from eq. (2.2.18) that

\[
\nabla^\mu u_A = u_A, \mu + (1/2) \Delta_{kmn} \sigma^{kEB} \sigma^{mEB} u_B.
\]

(3.3.1)

on account of \((S^{km})_{AB} = i \sigma^{kEB} \sigma^{mEB} \).

Here, let us put

\[
\Delta_{ABCD} = \Delta_{kmn} \sigma^{kAB} \sigma^{mCD},
\]

(3.3.2)

then, because of the antisymmetry \(\Delta_{kmn} = -\Delta_{mkn} \).
\[\Delta_{ABCD} \text{ is reduced just like as } F_{\hat{A}\hat{B}CD} \text{ in (3.2.6)}:\]
\[\Delta_{\hat{A}\hat{B}CD} = \epsilon_{\hat{A}\hat{C}} \Gamma_{BD\mu} + \epsilon_{BD} \Gamma_{\hat{A}\hat{C}\mu}, \quad (3.3.3) \]
with
\[\Gamma_{AB\mu} = (1/2) \Delta_{\hat{E}A} \hat{\epsilon}_{\mu} \quad (= \Gamma_{BA\mu}) \quad (3.3.4) \]
and its complex conjugate \(\Gamma_{\bar{A}\bar{B}\mu} \).

We can thus rewrite the expression (3.3.1) as
\[\nabla_\mu u_A = u_A, \quad u_A, \mu - \Gamma^B_{A\mu} u_B. \quad (3.3.5) \]
On the other hand, using this expression (3.3.5), we obtain the similar expression for \(\nabla_\mu v^A \), where \(v^A \) is a contravariant component of a spinor \(v \):
\[\nabla_\mu v^A = v^A, \quad v^A, \mu + \Gamma^A_{B\mu} v^B, \quad (3.3.6) \]
noting the relation
\[\nabla_\mu (u_A v^A) = (u_A v^A), \quad \mu. \]
Generally, assuming the Leibniz rule, a similar formula for any spinor is obtained.

Using the formula, it is shown that the "covariant" derivatives, \(\nabla_\mu \epsilon_{AB}, \nabla_\mu \sigma_k^{AB} \) and their associates, are all zero:
\[\nabla_\mu \epsilon_{AB} = \epsilon_{AB}, \quad \mu - \Gamma^C_{A\mu} \epsilon_{CB} - \Gamma^C_{B\mu} \epsilon_{AC} \]
\[= \Gamma_{AB\mu} - \Gamma_{BA\mu} = 0 \quad (3.3.7) \]
and since, noting the relation \(\nabla_\mu v^k = v^k, \quad \mu - \Delta^k_{mu} v^m \),
for a spinor equivalent \(v^{\hat{A}B} \) of vector \(v^k \),
\[\nabla_\mu v^{\hat{A}B} = \nabla_\mu (v^k \sigma_k^{\hat{A}B}) = \nabla_\mu v^k \cdot \sigma_k^{\hat{A}B} + v^k \nabla_\mu \sigma_k^{\hat{A}B} \]
\[= v^{\hat{A}B}, \quad \mu + \Gamma^{\hat{A}C}_{\mu} v^{\hat{C}B} + \Gamma^B_{D\mu} v^{\hat{A}D} = \nabla_\mu v^k \cdot \sigma_k^{\hat{A}B}, \]
therefore
\[\nabla_\mu \sigma_k^{\hat{A}B} = \sigma_k^{\hat{A}B}, \quad \mu + \Delta^m_{k\mu} \sigma_m^{\hat{A}B} + \Gamma^{\hat{A}C}_{\mu} \sigma_k^{\hat{C}B} \]
\[+ \Gamma^B_{D\mu} \sigma_k^{\hat{A}D} = 0 \quad (3.3.8) \]
and so on.

And also, as a result, we find out again
\[\nabla_\mu \eta_{km} = \nabla_\mu (\sigma_k^{\hat{A}B} \sigma_{m\hat{A}B}) = 0 \quad (3.3.9) \]

4. Spinor formalism

In this section, we shall find again the various expressions mentioned in section 2 in spinor form.

4.1 Field equations in spinor form First of all, we consider eq. (2.2.1).
According to the procedure given in the previous section, we know that a spinor equivalent T_{ABCD} of a symmetric tensor T_{km} is reduced as

$$T_{ABCD} = \chi \hat{\lambda} \hat{c} BD + \lambda \epsilon \lambda \hat{c} \epsilon_{BD},$$

(4.1.1)

where

$$\chi \hat{\lambda} \hat{c} BD = (1/2) (T_{ABCD} + T_{\hat{c}B\hat{d}D})$$

(4.1.2)

having the symmetry properties

$$\chi \hat{\lambda} \hat{c} BD = \chi \hat{\epsilon} \hat{c} \hat{d} BD = \chi \hat{\lambda} \hat{c} DB = \chi \hat{\epsilon} \hat{d} \hat{c} C$$

(4.1.3)

and

$$\lambda = (1/4) T_{\epsilon\phi}^{\epsilon\phi} = (1/4) T_{m}^{m} = (1/4) T_{\mu}^{\mu}.$$

(4.1.4)

*) T_{km} may not be manifestly symmetric, but essentially must be so, because of the Lorentz gauge invariance. Accordingly, it should be understood that T_{km} means a symmetric part of it, whenever it has not a manifest symmetry.

Now, we obtain the following two spinor equations, instead of one tensor equation (2.2.1):

$$X_{(G)} \hat{\lambda} \hat{c} BD = (1/4a) \chi \hat{\lambda} \hat{c} BD$$

(4.1.5)

and

$$\Lambda_{(G)} = (1/12a) \lambda.$$

(4.1.6)

Here $X_{(G)} \hat{\lambda} \hat{c} BD$ and $\Lambda_{(G)}$, together with a completely symmetric spinor $\Psi_{(G)ABCD}$, represent a spinor equivalent $R_{ABCD\hat{E}\hat{F}GH}$ of Riemann curvature tensor $R_{\mu\nu\lambda\kappa}$ (= $b^{k}_{\mu} b^{m}_{\nu} b^{n}_{\lambda} b^{p}_{\kappa}$, R_{kmnp}) in an exactly similar way to (3.2.13) without Φ_{AB}. However, it should be remarked that $\Lambda_{(G)}$ is real unlike Λ, because of the additional symmetries of R_{kmnp}, i.e.,

$$R_{kmnp} = R_{nmkp}$$

and

$$R_{kmnp} + R_{klnm} + R_{kmpn} = 0.$$

On the other hand, after the tedious calculation we see that $\chi \hat{\lambda} \hat{c} BD$ and λ are written in terms of irreducible spinors as follows:

$$\chi \hat{\lambda} \hat{c} BD = \chi_{(M)} \hat{\lambda} \hat{c} BD = \chi_{(\epsilon)} \hat{\lambda} \hat{c} BD + \chi_{(F)} \hat{\lambda} \hat{c} BD$$

(4.1.7)

and

$$\lambda = \lambda_{(M)} + \lambda_{(\epsilon)} + \lambda_{(F)}.$$

(4.1.8)
with
\[
\chi^{(e)}{}_{\lambda cBD} = (3/2) c_2 \left\{ \nabla_{AD} \psi_{\lambda cBD} + \nabla_{CD} \psi_{\lambda BD} + \nabla_{\dot{E}} \psi_{\dot{\Lambda} c\dot{A} \dot{C}} \right.
\]
\[+ \nabla_{\dot{E}} \psi_{\dot{B} \dot{A} \dot{C}} + \psi_{\dot{A} \dot{B} \dot{E} \dot{F}} \psi_{\dot{C} \dot{D} \dot{E} \dot{F}}
\]
\[+ \psi_{\dot{A} \dot{D} \dot{E} \dot{F}} \psi_{\dot{C} \dot{B} \dot{E} \dot{F}} + \psi_{\dot{B} \dot{A} \dot{E} \dot{F}} \psi_{\dot{D} \dot{A} \dot{E} \dot{F}} \right\} + (3/2) c_2 \left\{ \nabla_{\dot{A} \dot{B}} (\varphi \dot{C} \dot{D} + \varphi \dot{D} \dot{C}) + \nabla_{\dot{C} \dot{D}} (\varphi \dot{A} \dot{B} + \varphi \dot{B} \dot{A}) \right.
\]
\[+ \nabla_{\dot{C} \dot{B}} (\varphi \dot{A} \dot{D} + \varphi \dot{D} \dot{A}) + \nabla_{\dot{A} \dot{D}} (\varphi \dot{C} \dot{B} + \varphi \dot{B} \dot{C}) \right\} + (1/12) (9 c_2 + 36 c_3 + 8 c_4) \left\{ \psi_{\dot{A} \dot{B} \dot{D} \dot{F}} \varphi_{\dot{C} \dot{F}} + \psi_{\dot{C} \dot{D} \dot{B} \dot{F}} \varphi_{\dot{A} \dot{F}} \right.
\]
\[+ \psi_{\dot{D} \dot{A} \dot{C} \dot{E}} \varphi_{\dot{B} \dot{E}} + \psi_{\dot{D} \dot{A} \dot{C} \dot{E}} \varphi_{\dot{B} \dot{E}} \right\} + (1/12) (27 c_1 + 36 c_2 - 8 c_3) \left\{ \psi_{\dot{A} \dot{B} \dot{D} \dot{F}} \varphi_{\dot{C} \dot{F}} + \psi_{\dot{C} \dot{D} \dot{B} \dot{F}} \varphi_{\dot{A} \dot{F}} \right.
\]
\[+ \psi_{\dot{D} \dot{A} \dot{C} \dot{E}} \varphi_{\dot{B} \dot{E}} + \psi_{\dot{D} \dot{A} \dot{C} \dot{E}} \varphi_{\dot{B} \dot{E}} \right\} + (1/3) (9 c_2 - c_3) \left\{ \varphi \dot{A} \dot{D} \varphi \dot{C} \dot{B} + \varphi \dot{C} \dot{D} \varphi \dot{A} \dot{B} + \varphi \dot{D} \dot{A} \varphi \dot{B} \dot{C}
\]
\[+ \varphi \dot{D} \dot{C} \varphi \dot{B} \dot{A} \right\},
\tag{4.1.9}
\]
\[
\lambda^{(e)}_{\lambda cBD} = \Psi_{\dot{B} \dot{F} \dot{E}} (g_1 X_{\dot{A} \dot{C}} \dot{E}F + g_2 X_{\dot{C} \dot{D}} \dot{E}F) + \Psi_{\dot{A} \dot{C} \dot{E} \dot{F}} \left(g_1 X_{\dot{A} \dot{C} \dot{E} \dot{B}} + g_2 X_{\dot{C} \dot{D} \dot{E} \dot{B}} \right)
\]
\[+ \Phi_{\dot{E} \dot{B}} (g_1 X_{\dot{A} \dot{C} \dot{E} \dot{D}} + g_3 X_{\dot{D} \dot{A} \dot{C} \dot{E}} + \Phi_{\dot{E} \dot{B}} (g_1 X_{\dot{A} \dot{C} \dot{E} \dot{B}} + g_3 X_{\dot{E} \dot{B} \dot{A} \dot{C}})
\]
\[+ \Phi_{\dot{E} \dot{C}} (g_1 X_{\dot{B} \dot{D} \dot{A} \dot{C}} + g_3 X_{\dot{B} \dot{D} \dot{C} \dot{E}}) + \Phi_{\dot{E} \dot{C}} (g_1 X_{\dot{B} \dot{D} \dot{A} \dot{C}} + g_3 X_{\dot{E} \dot{A} \dot{B} \dot{D}})
\]
\[+ g_4 (\Lambda - \Lambda^\ast) (X_{\dot{A} \dot{C} \dot{B} \dot{D}} - X_{\dot{B} \dot{D} \dot{A} \dot{C}}) + g_5 (\Lambda + \Lambda^\ast) (\dot{A} \dot{C} \dot{B} \dot{D} + X_{\dot{B} \dot{D} \dot{A} \dot{C}}),
\tag{4.1.10}
\]
\[
\lambda^{(e)}_{\lambda cBD} = - (9/2) c_2 (\nabla_{\dot{E} \dot{F}} \varphi_{\dot{E} \dot{F}} + \nabla_{\dot{E} \dot{F}} \varphi_{\dot{E} \dot{F}})
\]
\[+ (3/4) c_1 (\psi_{\dot{I} \dot{E} \dot{F}} \psi_{\dot{I} \dot{E} \dot{F}} + \psi_{\dot{I} \dot{E} \dot{F}} \psi_{\dot{I} \dot{E} \dot{F}})
\]
\[+ (1/2) (9 c_2 - c_3) (\varphi_{\dot{E} \dot{F}} \varphi_{\dot{E} \dot{F}} + \varphi_{\dot{E} \dot{F}} \varphi_{\dot{E} \dot{F}})
\]
\[+ (9 c_2 + c_3) \varphi_{\dot{E} \dot{F}} \varphi_{\dot{E} \dot{F}} \right\},
\tag{4.1.11}
\]
\[
\lambda^{(f)} = 0,
\]
and \(\chi^{(M)}_{\lambda cBD}\) and \(\lambda^{(M)}\) are not determined until a matter field \(q\) is concretely fixed.

Here we put
\[
g_1 = 2 (2 a_4 - a_5),
\]
\[
g_2 = -2 (3 a_4 + 2 a_5 + a_6),
\]
\[
g_3 = -2 (2 a_4 + 2 a_5 + a_6),
\]
\[
g_4 = 8 (a_4 + a_5),
\]
and
\[
g_5 = -4 (a_5 + 12 a_6).
\]
Next, let us consider eq. (2. 2. 7), which is straightforwardly written out

\[\nabla_{\mathcal{G}H} H + K_{KLEFGH} = K_{KLEFGH} - K_{KLEFGH} + (1/2) (I_\mathcal{G}CDE - I_\mathcal{G}CD) = - S_{(M) ABCEFG}. \]

Since this equation has a symmetric property just like as \(\mathcal{G}_\mathcal{M}_{ABCD} \), it can be decomposed to the following two equations:

\[
\begin{align*}
8a_4 \nabla_{\mathcal{H}H} \Phi_{BH} + 12a_4 \psi_{\mathcal{H}F} \Phi_{FH} \\
+ 2 \nabla_{\mathcal{G}H} \{ (2a_5 - a_5) X_{\mathcal{G}BH} - (2a_5 + a_5) X_{\mathcal{G}HB} \} \\
+ 2 \psi_{\mathcal{G}H} X^{(2a_5 - a_5)} X_{\mathcal{G}FH} - (2a_5 + a_5) X_{\mathcal{G}HB} \\
+ 2 \psi_{\mathcal{G}H} \{ (2a_5 - a_5) X_{\mathcal{G}BH} - (2a_5 + a_5) X_{\mathcal{G}HB} \} \\
+ 2 \psi_{\mathcal{G}H} + 3 \psi_{\mathcal{G}H} \{ (2a_5 - a_5) X_{\mathcal{G}BH} - (2a_5 + a_5) X_{\mathcal{G}HB} \} \\
+ 12 \nabla_{\mathcal{G}H} \{ (a_i + 6a_i) \Lambda - (a_i - 6a_i) \Lambda^* \} \\
- 12 \{ (\varphi_{\mathcal{G}H} + 3 \varphi_{\mathcal{H}A}) \{ (a_i + 6a_i) \Lambda - (a_i - 6a_i) \Lambda^* \} \\
+ 6a_2 \psi_{\mathcal{G}H} \{ (a_i - 2c_i) \Lambda + (9c_i + 2c_i) \varphi_{\mathcal{G}H} + (9c_i - 2c_i) \varphi_{\mathcal{H}A} = 6 \Theta_\mathcal{M} \Lambda \}
\end{align*}
\]

and

\[
\begin{align*}
6a_2 \nabla_{\mathcal{G}H} \psi_{\mathcal{G}H} + 3a_2 \{ \varphi_{\mathcal{G}H} + \varphi_{\mathcal{H}A} \} \psi_{\mathcal{G}D} + 12a_2 \psi_{\mathcal{H}F \mathcal{D}} \psi_{\mathcal{G}F \mathcal{D} \mathcal{I} \mathcal{H}} \\
+ 4a_4 \nabla_{\mathcal{G}H} \varphi_{\mathcal{G}H} + 3 \varphi_{\mathcal{H}A} \} \psi_{\mathcal{G}D} + 12a_2 \psi_{\mathcal{H}F \mathcal{D} \mathcal{I} \mathcal{H}} \\
- 2 \nabla_{\mathcal{G}H} \{ (2a_5 - a_5) X_{\mathcal{GCD}} - (2a_5 + a_5) X_{\mathcal{GCD} \mathcal{A}} \} \\
+ (\varphi_{\mathcal{G}H} X_{\mathcal{GCD}} - (2a_5 + a_5) X_{\mathcal{GCD} \mathcal{A}} \} \\
- 4 \psi_{\mathcal{G}H} \{ (2a_5 - a_5) X_{\mathcal{GCD} \mathcal{A}} - (2a_5 + a_5) X_{\mathcal{GCD} \mathcal{A}} \} \\
- 8 \{ (a_i + 6a_i) \Lambda - (a_i - 6a_i) \Lambda^* \} \psi_{\mathcal{G}D} - 3 \psi_{\mathcal{G}D} \Lambda_{\mathcal{D} \mathcal{I} \mathcal{H}} = - 2 \pi_{\mathcal{M} \mathcal{D}} \Lambda_{\mathcal{D} \mathcal{I} \mathcal{H}} \Lambda_{\mathcal{D} \mathcal{I} \mathcal{H}}
\end{align*}
\]

where \(\Theta_{\mathcal{M} \mathcal{D}} \Lambda_{\mathcal{D} \mathcal{I} \mathcal{H}} \) and \(\pi_{\mathcal{M} \mathcal{D}} \Lambda_{\mathcal{D} \mathcal{I} \mathcal{H}} \) are irreducible spinors of \(S_{\mathcal{M} \mathcal{D} \mathcal{I} \mathcal{H}} \), just defined like as \(\varphi_{\mathcal{D} \mathcal{I} \mathcal{H}} \) and \(\psi_{\mathcal{D} \mathcal{I} \mathcal{H}} \) in (3. 2. 14) respectively.

\[
\psi_{\mathcal{G}H} X_{\mathcal{GCD} \mathcal{A}} = (1/3) \{ \psi_{\mathcal{G}H} X_{\mathcal{GCD} \mathcal{A}} \Lambda_{\mathcal{GHD}} + \psi_{\mathcal{G}H} X_{\mathcal{GHB}} + \psi_{\mathcal{G}H} X_{\mathcal{GHC}} \}
\]

4.2. Identities in spinor form In this subsection, we shall consider only the identities (2. 3. 1) and (2. 3. 8), which will be thought of the field equations in our later treatment. The identities (2. 3. 4) and (2. 3. 5) are trivial, when they are rewritten in spinor form, and also an identity (2. 3. 2) is automatically satisfied, making use of the definition (2. 3. 8). And the identity (2. 3. 4) is a famous Bianchi identity, whose spinor form will be found in a great deal of
literatures.10,17,20

First, let us consider (2.3.1), which becomes on account of (2.3.3) and (2.3.6)
\[\nabla_p F^{+kmpq} (K) + K^k_{\ p} F^+_{\ mnpq} + K^m_{\ np} F^+_{\ kmpq} = 0. \]

Noting the relation
\[\epsilon_{ABCD\hat{E}FGH} = \sigma^k_{\ \hat{A}B} \sigma^n_{\ CD} \sigma^m_{\ E\hat{F}} \sigma^p_{\ GH} \epsilon_{knpq} \]
\[= i(\epsilon_{BD} \epsilon_{FH} \epsilon_{\hat{A}\hat{E}} \epsilon_{\hat{C}\hat{G}} - \epsilon_{BF} \epsilon_{DH} \epsilon_{\hat{A}\hat{C}} \epsilon_{\hat{B}\hat{G}}), \quad (4.2.1) \]

after the lengthy calculations, we shall find out the following two identities, which are the irreducible components of a spinor equivalent of (2.3.1):
\[\nabla_{\hat{A}}^F \Psi_{\ (K)BCDF} - 2\Psi_{\ (K)AEFG} (\Psi_{\ CD})^{EF} + (1/2) (\varphi_{\ A}^E + 3\varphi_{\ A}^E) \Psi_{\ EBCD} \]
\[- \nabla^G_{\ (K)BCD} \Lambda_{\ A\hat{G}} + 2\Psi_{\ (K)BCD} \Lambda_{\ A\hat{G}} + (1/2) (\varphi_{\ A\hat{G}} + 3\varphi_{\ A\hat{G}}) \Psi_{\ EBCD} \]
\[- \nabla^A_{\ (K)CD} + (3/2) (\varphi_{\ A\hat{G}} + 3\varphi_{\ A\hat{G}}) \Lambda + 2\Psi_{\ AB\hat{G}} \Lambda = 0. \quad (4.2.2) \]

and
\[\nabla_{\hat{A}}^H \Psi_{\ BH\Lambda\hat{C}} + \Psi_{\ HEB} \Psi_{\ EH\Lambda\hat{C}} + (\varphi_{\ H\Lambda} + 3\varphi_{\ H\Lambda}) \Psi_{\ BH\Lambda\hat{C}} \]
\[- 2\nabla_{\hat{A}}^H \Psi_{\ BH} + 3\Psi_{\ ABHE} \Psi_{\ EH} \]
\[+ 3\nabla_{\hat{A}}^H \Lambda_{\ (K)CD} - 3(\varphi_{\ AB} + 3\varphi_{\ BA}) \Lambda + \Psi_{\ AEFH} \Psi_{\ B\hat{E}FH} = 0. \quad (4.2.3) \]

Finally, we get four identities from a spinor equivalent of (2.3.8), i.e.,
\[2\nabla_{\hat{A}}^E (\Psi_{\ \hat{A}BCD}) - 2\Psi_{\ \hat{A}EF\hat{B}} \Psi_{\ \hat{C}D} + (\varphi_{\ \hat{A}E} + 3\varphi_{\ \hat{A}E}) \Psi_{\ \hat{C}BD} = 2\Psi_{\ (K)\hat{A}BCD}, \quad (4.2.4) \]
\[4\nabla_{\hat{A}}^E (\Psi_{\ \hat{A}D\hat{C}E} - 4\Psi_{\ \hat{A}E\hat{C}G} \Psi_{\ \hat{D}C} + 2(\varphi_{\ \hat{D}C} + 3\varphi_{\ \hat{D}C}) \Psi_{\ \hat{B}A\hat{C}E} \]
\[+ \nabla_{\hat{A}}^E (\varphi_{\ \hat{A}D\hat{C}} + 3\varphi_{\ \hat{A}D\hat{C}}) \Psi_{\ \hat{B}A\hat{C}E} - (\varphi_{\ \hat{B}A} + 3\varphi_{\ \hat{B}A}) (\varphi_{\ \hat{D}C} + 3\varphi_{\ \hat{D}C}) = 4\Psi_{\ \hat{A}C\hat{B}D}, \quad (4.2.5) \]
\[2\nabla_{\hat{A}} \Psi_{\ \hat{E}FAB} + 3(\varphi_{\ \hat{E}F} + 3\varphi_{\ \hat{F}E}) \Psi_{\ \hat{E}FAB} \]
\[- 2\nabla_{\hat{A}} (\varphi_{\ \hat{E}B} + 3\varphi_{\ \hat{F}B}) = 8\Psi_{\ \hat{A}B}, \quad (4.2.6) \]

and
\[3\nabla_{\hat{A}} (\varphi_{\ \hat{E}F} + 3\varphi_{\ \hat{F}E}) + (3/2) (\varphi_{\ \hat{E}F} + 3\varphi_{\ \hat{F}E}) (\varphi_{\ \hat{E}F} + 3\varphi_{\ \hat{F}E}) \]
\[- 2\Psi_{\ \hat{E}FGH} \Psi_{\ \hat{E}FGH} = -24\Lambda_{\ (K)}, \quad (4.2.7) \]

where a subscript \((K)\) was adopted by reason of representing the irreducible
Spinors of $F_{\dot{A}\dot{B}\dot{C}\dot{D}\dot{E}\dot{F}\dot{G}\dot{H}}(K)$, just defined like as the correspondings of $F_{\dot{A}\dot{B}\dot{C}\dot{D}\dot{E}\dot{F}\dot{G}\dot{H}}$.

5. Concluding remark

A spinor formalism introduces the notion of a null tetrad into a theory in a remarkably natural way. Accordingly, this approach seems to be useful for a research on massless gauge fields propagating with positive energy. In forthcoming paper we shall investigate this possibility.

Acknowledgments

The author wishes to thank Profs. Y. Tanikawa and T. Nakano, and Drs. T. Ohtani and T. Nakamoto for many invaluable discussions.

Appendix: Identities induced by the Poincaré gauge invariance

Under the Poincaré gauge transformations (2.1.1) and (2.1.2), two fields b_k^μ and A_{km}^μ transform as

$$\delta b_k^\mu = -\omega_k^m b_m^\mu + \xi^\mu_{,k} b_k^\nu,$$

$$\delta A_{km}^\mu = -\omega_m^k A_{km}^\mu - \omega_k^m A_{km}^\mu - \omega_{km,\mu} - A_{km}^\xi,$$

From the invariance of an action (2.1.28) (neglected the divergence term) under these transformations, we get the following identical relations, according to Noether's theorem:

$$\begin{align*}
(i/2)[L']_q S^{km} q + (1/2)\left([L']_\mu^k b_{km} - [L']_m^k b_{km}^\nu \right) \\
+ [L']^{knu} A_{nm}^\mu - [L']^{mn} A_k^{\nu, \mu} + [L']^{knu, \mu} A_{km}^\nu, \mu = 0, \quad \text{(A. 1)}
\end{align*}$$

$$\begin{align*}
[L']_q q_{,\mu} + [L']_\nu^k b_{k, \nu}^\mu_{,\nu} + [L']_\mu^k b_{k, \nu}^\nu_{,\nu} \\
+ [L']_{k,\nu} A_{km}^\nu A_{km}^\nu - [L']_{k,\nu}^{km} A_{km}^\nu, \mu = 0, \quad \text{(A. 2)}
\end{align*}$$

$$\begin{align*}
\frac{\partial}{\partial x^\mu} \left\{ (i/2) \frac{\partial L'}{\partial q, \mu} S^{km} q + (1/2) \left(\frac{\partial L'}{\partial b_k^\nu}, \mu b_{km}^\nu - \frac{\partial L'}{\partial b_m^\nu}, \mu b_{k, \nu}^\nu \right) + \frac{\partial L'}{\partial A_{k,\nu}^\mu} A_{nm}^\nu \right\} \\
- \frac{\partial L'}{\partial A_{mn, \nu}^\mu} A_{km}^\nu - [L']_{k,\nu}^{km} \right\} = 0, \quad \text{(A. 3)}
\end{align*}$$
\[(i/2) \frac{\partial L'}{\partial a_\mu} S_{\kappa \mu} q + (1/2) \left(\frac{\partial L'}{\partial b_{\nu}_\mu} - \frac{\partial L'}{\partial b_{\nu}_\mu} b_{\kappa \nu} \right) \\
+ \frac{\partial L'}{\partial A_{\kappa \mu}} A_{\mu \nu} - \frac{\partial L'}{\partial A_{\kappa \mu}} A_{\mu \nu} - [L']_{\kappa \mu} \]
\[= \frac{\partial}{\partial x^\nu} \left(\frac{\partial L'}{\partial A_{\kappa \mu}} \right) = 0, \]
(A. 4)
\[\frac{\partial L'}{\partial A_{\kappa \mu}}, \nu + \frac{\partial L'}{\partial A_{\kappa \mu}}, \mu = 0. \]
(A. 5)
\[\frac{\partial}{\partial x^\nu} \left([L']_{\mu} b_{\kappa \mu} - [L']_{\kappa \mu} A_{\kappa \mu \nu} + a(\delta^\nu, K^\lambda, \lambda - K^\nu, \nu) - \tilde{\tau}_{\nu} \right) = 0, \]
(A. 6)
\[\frac{\partial}{\partial x^\nu} \left(\frac{\partial L'}{\partial b^\nu_{\mu}} b_{\kappa \mu} - \frac{\partial L'}{\partial A_{\kappa \mu}}, \mu \right) A_{\kappa \mu \nu} + 2a \frac{\partial K^\mu}{\partial g^{\nu}_{\kappa \mu}} g^{\nu}_{\kappa \mu} \]
\[+ 2a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu} - \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\nu}_{\kappa \mu}, \nu \right\} + [L']_{\nu} b_{\kappa \nu} - [L']_{\kappa \nu} A_{\kappa \nu \mu} \]
\[- \frac{\partial}{\partial x^\nu} \left(a(\delta^\nu, K^\lambda, \kappa - K^\nu, \kappa) - \tilde{\tau}_{\nu} \right) = 0, \]
(A. 7)
\[\frac{\partial}{\partial x^\mu} \left(a \frac{\partial K^\mu}{\partial g^{\nu}_{\kappa \mu}} g^{\nu}_{\kappa \mu} + a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu} \right) \]
\[+ \frac{1}{2} \left(\frac{\partial L'}{\partial b^{\nu}_{\mu}} b_{\kappa \mu} + \frac{\partial L'}{\partial b^{\nu}_{\mu}} b_{\kappa \mu} \right) \left(\frac{\partial L'}{\partial A_{\kappa \mu}}, \kappa \right) A_{\kappa \mu \nu} \]
\[+ 2a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\nu}_{\kappa \mu} + 2a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu} \]
\[+ 2a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu}, \nu + 2a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu}, \nu \]
\[- a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\mu}_{\kappa \mu}, \nu - a \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}} g^{\nu}_{\kappa \mu}, \nu \right\} = 0 \]
(A. 8)
\[\frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \kappa g^{\kappa \mu} + \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \kappa g^{\nu \lambda} + \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \mu g^{\kappa \mu} \]
\[+ \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \kappa g^{\mu \nu} + \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \lambda g^{\nu \mu} + \frac{\partial K^\nu}{\partial g^{\nu}_{\kappa \mu}}, \mu g^{\nu \lambda} = 0. \]
(A. 9)
where \(L' = L + a K^\nu, \nu \)
\[[L']_{\nu} = \frac{\partial L'}{\partial a_\mu} - \frac{\partial}{\partial x^\mu} \left(\frac{\partial L'}{\partial q_\mu} \right). \]
\[[L']^{\mu}_{\nu} = \frac{\partial L'}{\partial b^\mu_{k \nu}} - \frac{\partial}{\partial x^\nu}(\frac{\partial L'}{\partial b^\mu_{k \nu}}), \]

\[[L']^{k\mu} = \frac{\partial L'}{\partial A_{k\mu}} - \frac{\partial}{\partial x^\nu}(\frac{\partial L'}{\partial A_{k\mu \nu}}), \]

and

\[\tau^{\mu}_{\nu} = \frac{\partial L'}{\partial q_{\mu \nu}} + \frac{\partial L'}{\partial b^\lambda_{k \mu}} b^\lambda_{k \nu} + \frac{\partial L'}{\partial A_{k\mu \nu}} A_{k\mu \nu} - \delta^{\mu}_{\nu} L' \]

\[= a \tau^{\mu}_{\nu} + \tau^{\mu}_{\nu} + \text{divergence term.} \]

(A. 10)

From (A. 1) we see at once that the field equation for a field \(b^\mu_k \) is essentially symmetric, when another equations are fulfilled:

Putting \([L']_q = 0 \) and \([L']^{k\mu} = 0 \) in (A. 1), we find

\[[L']^{km} = [L']^{mk} \]

with \([L']^{km} = b^k_b [L']_\mu^m \).

When putting

\[[L']^{m}_{\mu} = b b^\mu_k J^{kn}, \]
\[[L']^{k\mu\nu} = b b^\mu_n N^{k\mu\nu}, \]

(A. 1) and (A. 2) are rewritten respectively as

\[D^n N^{k\mu\nu} + \nabla^\mu_n N^{k\mu\nu} + J^{[kn]} = 0 \]

or

\[\nabla^n N^{k\mu\nu} + K^{k}_{rn} N^{rmn} + K^{m}_{rn} N^{km} + J^{[mn]} = 0, \]

and

\[D^k J_p^{k} + \nabla^k J_p^{k} - G_{knp} J^{k} - F_{k\mu\nu} N^{kmn} = 0 \]

or

\[\nabla^k J_p^{k} - K_{knp} J^{[km]} - F_{k\mu\nu} N^{kmn} = 0. \]

(A. 2')

From these identities we can get the identities (2. 3. 1) ~ (2. 3. 5), noting that the Poincaré gauge invariance is preserved, even if any of \(abR \), \(L_C \) and \(L_F \) is substituted for \(L \) in the action \(I \): Substituting \(L_F \) for \(L' \) in (A. 1)' we get an identity (2. 3. 5).
And, substituting L_F and L_e for L' in (A. 2)$'$, we get the identities (2. 3. 1) and (2. 3. 2) respectively.

References

3) K. Hayashi, Prog. Theor. Phys. 39, 494 (1968)
11) E. Cartan, "The Theory of Spinors" (Hermann, Paris 1966)
13) W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953)
14) E. M. Corson, "Introduction to Tensors, Spinors, and Relativistic Wave-equations" (Chelsea Publ. Co., N.Y., 1953)
15) L. Witten, Phys. Rev. 113, 357 (1959)
19) F. A. E. Pirani, Phys. Rev. 105, 1089 (1957)
20) R. Penrose and W. Rindler, "Spinors and Space-time 1, 2" (Cambridge Univ. Press, 1984)