On Pseudo-Affine Domains

Ken-ichi Yoshida and Susumu Oda*

Department of Applied Mathematics,
Okayama University of Science,
Ridai-cho, Okayama 700, Japan
*Uji-Yamada High School,
Uraguchi, Ise, Mie 516, Japan
(Received September 30, 1994)

In what follows, all rings considered are commutative with identity.

We say that a ring A is a Hilbert ring if each prime ideal of A is an intersection of maximal ideals of R. It is known that a k-affine domain over a field k is a Hilbert ring ([G, (31.11)]).

We say that a ring A is a catenary ring if the following condition is satisfied: for any prime ideals p and q of A with $p \subseteq q$, then exists a saturated chain of prime ideals starting from p and ending at q, and all such chains have the same (finite) length. We say that a ring A is a universally catenary ring if A is Noetherian and every finitely generated A-algebra is catenary.

Let k be a field and R a K-affine domain. Then R is Noetherian, Hilbert and catenary. Moreover $\dim R_m = Tr.\text{deg}_k R < +\infty$ for each maximal ideal m of R.

Our objective in this paper is to investigate integral domains having these properties.

Throughout this paper, k denotes a field and R an integral domain containing k and $K(R)$ denotes the quotient field of R unless otherwise specified. Any unexplained terminology is standard, as in [M], [N].

Definition 1. An integral domain R is called a pseudo-affine domain over k (PAD(k) for short) if the following conditions are satisfied:

(i) R is Noetherian;
(ii) R is Hilbert and catenary;
(iii) $\dim R_m = Tr.\text{deg}_k R < +\infty$ for each maximal ideal m of R.

Remark 2. It is known that a k-affine domain is a PAD(k) ([M, (5.6)]). A field K containing k is a PAD(k) if and only if K is algebraic over k.

The following Lemma 3 is shown in [O].

Lemma 3. Let R be an integral domain containing a field k. Let

$$(0) = P_0 \subset P_1 \subset \cdots \subset P_r$$

be a strict ascending chain of prime ideals of R and let $a_i \in P_i \setminus P_{i-1}$ $(1 \leq i \leq r)$. Then
a_1, \ldots, a_r are algebraically independent over k.

Proof. Suppose that there exists a non-trivial polynomial $F(X_1, \ldots, X_r)$ in a polynomial ring $k[X_1, \ldots, X_r]$ such that $F(a_1, \ldots, a_r) = 0$. We can assume that $\deg F(X_1, \ldots, X_r)$ is minimal among such polynomials. Write:

$$0 = F(a_1, \ldots, a_r) = F_0(a_2, \ldots, a_r)a_1 + \cdots + F_n(a_2, \ldots, a_r)a_1^n.$$

Let a'_2, \ldots, a'_r denote the images in R/P. By induction on r, we may assume that a'_2, \ldots, a'_r are algebraically independent over k. Thus since $F(a'_1, \ldots, a'_r) = F_0(a'_2, \ldots, a'_r) = 0$, we have $F_0(X_2, \ldots, X_r) = 0$ in $k[X_2, \ldots, X_r]$. We have:

$$F(a_1, \ldots, a_r) = a_1(F(a_2, \ldots, a_r) + \cdots + F_n(a_2, \ldots, a_r)a_1^{n-1}) = 0,$$

and hence

$$F_1(a_2, \ldots, a_r) + \cdots + F_n(a_2, \ldots, a_r)a_1^{n-1} = 0.$$

By the minimality of $\deg F(X_1, \ldots, X_r)$, we conclude that:

$$F_1(X_2, \ldots, X_r) + \cdots + F_n(X_2, \ldots, X_r)X_1^{n-1} = 0$$

in $k[X_1, \ldots, X_r] = 0$ in $k[X_1, \ldots, X_r]$, a contradiction.

Proposition 4. $\dim R \leq \text{Tr.deg}_k R$.

Proof. This follows Lemma 3 immediately.

Corollary 4.1. Let R be a PAD(k) and let $p \in Ht_k(R)$. Then

(i) $\dim R/p = \dim R - 1$;
(ii) $\text{Tr.deg}_k R/p = \text{Tr.deg}_k R - 1$.

Proof. Since R is catenary, $\dim R - 1 = \dim R/p$. By definiton, $\text{Tr.deg}_k R/p \leq \text{Tr.deg}_k R/p$ by Proposition 4. Thus $\text{Tr.deg}_k R/p = \text{Tr.deg}_k R - 1 = \dim R - 1 = \dim R/p$.

Proposition 5. Let R be a PAD(k) and let p is a prime ideal of R. Then R/p is also a PAD(k).

Proof. Since R is Hilbert (resp. Noetherian), so is R/p. Corollary 4.1 repeatedly, $\dim R/p = \dim R - \text{ht}(p) = \text{Tr.deg}_k R/p$.

Corollary 5.1. An integral domain which is a homomorphic image of a PAD(k) is also a PAD(k).

Proof. Let p be a prime ideal of $\text{ht}(p) = 1$. Then it is clear that R/p is a Hilbert ring. Hence R/p is a PAD(k) by Corollary 4.1. So we get our conclusion by induction on $\dim R$.

Proposition 6. Assume that R is a PAD(k). Then $\text{ht}(p) = \dim R - \dim R/p = \text{Tr.deg}_k R - \text{Tr.deg}_k R/p$ for each $p \in \text{Spec}(R)$.
Proof. This follows from the proof of Corollary 4.1 and \(\dim R = \text{Tr.deg}_a R \) and \(\dim R/\mathfrak{p} = \text{Tr.deg}_a R/\mathfrak{p} \) by definition.

Lemma 7 ([G, (31.18)]). The following conditions are equivalent:
1. \(R \) is a Hilbert ring;
2. For each maximal ideal \(M \) of a polynomial ring \(R[X_1, \ldots, X_n] \), \(M \cap R \) is a maximal ideal of \(R \);
3. A polynomial ring \(R[X_1, \ldots, X_n] \) is a Hilbert ring;
4. \(R/I \) is a Hilbert ring for each proper ideal \(I \) of \(R \).

Example. Let \(k \) be a field and \(k[t] \) a polynomial ring. Put \(R = k[t]_{(t)} \). Then \(R[X]/(tX - 1) \cong k(t) \) and \((tX - 1) \) is a maximal ideal of \(R[X] \) with \(R \cap (tX - 1) = \{0\} \). So \(R[X] \) is a Hilbert ring but is not a PAD(k).

Lemma 8 ([G, (31.9)]). If \(R \) is a Hilbert ring and if \(M \) is a maximal ideal of a polynomial ring \(R[X_1, \ldots, X_n] \), then \(R[X_1, \ldots, X_n]/M \) is algebraic over \(R/M \cap R \).

L. J. Ratliff shows the following result:

Lemma 9 (cf. [M, p. 31]) Let \((A, m) \) be a Noetherian local domain. Then \(A \) is catenary if and only if \(ht(p) + \dim A/\mathfrak{p} = \dim A \) for each \(p \in \text{Spec}(A) \).

Lemma 10. Let \(R \) be a PAD(k), let \(R[X] \) be a polynomial ring and let \(P \) be a prime ideal of \(R[X] \) such that \((P \cap R)R[X] = P\). Then \(\dim R[X]/P = \text{Tr.deg}_a R[X]/P \).

Proof. Since \(R \) is a PAD(k), we have \(\dim R/P \cap R = \text{Tr.deg}_a R/P \cap R \) by Proposition 5. Since \((P \cap R)R[X] = P\), it follows that \(\dim R/P \cap R = \dim R[X]/P \). By the same reason, \(R[X]/P \) is algebraic over \(R/P \cap R \). Thus we have \(\text{Tr.deg}_a R/P \cap R = \text{Tr.deg}_a R[X]/P \). Hence \(\dim R[X]/P = \dim R/P \cap R = \text{Tr.deg}_a R/P \cap R = \text{Tr.deg}_a R[X]/P \).

Proposition 11. A PAD(k) is universally catenary.

Proof. We have only to prove a polynomial ring \(R[X] \) is catenary. Take \(P \in \text{Spec}(R[X]) \). First assume that \(P = pR[X] \) for some \(p \in \text{Spec}(R) \) i.e., \((P \cap R)R[X] = P\). Then \(ht(P) = ht(p) = (\dim R + 1) - (\dim R/p + 1) = \dim R[X] - \dim R[X]/pR[X] \) by Lemma 9. Second, assume that \((P \cap R) \neq P\). Then \(ht(p) - ht(P \cap R) = 1 \). Hence \(ht(P) = ht(P \cap R) + 1 = \dim R - \dim R/P \cap R + 1 = \dim R[X] - \text{Tr.deg}_a R/P \cap R = \dim R[X] - \text{Tr.deg}_a R/P \cap R = \dim R[X] - \text{Tr.deg}_a R[X]/P \cap R \). Therefore by Lemma 9, we conclude that \(R[X] \) is catenary.

Let \(A \) be a Noetherian domain and \(B \) a finitely generated extension domain. We say that the *dimension formula* holds between \(A \) and \(B \) if

\[
ht P = ht p + \text{Tr.deg}_a B - \text{Tr.deg}_a \mathfrak{p}, k(P)
\]
for every $P \in \text{Spec}(R)$, where $p = P \cap A$.

Corollary 11.1. Assume that R is a PAD(k). Then dimension formula holds between R/p and B for every prime ideal p of R and every finitely generated domain B of R/p.

Proof. Since R is universally catenary by Proposition 11, the conclusion follows from [M, (15.6)].

Theorem 12. The following conditions are equivalent:
(i) R is a PAD(k);
(ii) A polynomial ring $R[X_1, \ldots, X_n]$ is a PAD(k);
(iii) Every integral domain containing R which is finitely generated over R is a PAD(k).

Proof. (i) \Rightarrow (ii) follows from Lemmas 7 and 8 because $\dim R[X_1, \ldots, X_n] = \dim R + n = \text{Tr.deg}_k R + n = \text{Tr.deg}_k R[X_1, \ldots, X_n]$. By Proposition 11, $R[X_1, \ldots, X_n]$ is catenary. (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are immediately verified by Proposition 5.

Proposition 13. Let R be a normal PAD(k) and A a Noetherian domain which is integral over R. Then A is a PAD(k).

Proof. Let p be a prime ideal of A with $\dim A/p = 1$. Since A is integral and since B is a Hilbert ring, p is contained in infinitely many maximal ideals by Lying-Over Theorem. So by [G, (31, Ex. 22)], A is a Hilbert ring. Let M be a maximal ideal of A and put $m = M \cap R$. Then m is a maximal ideal of R. Note that A/M is algebraic over R/m. Moreover $\dim A_m = \dim R_m$ by Going-Down Theorem. Since $\text{Tr.deg}_k A = \text{Tr.deg}_k R$ and $\dim R_m = \text{Tr.deg}_k R$, we have $\dim A_m = \text{Tr.deg}_k A$. It is easy to see that A is catenary. Thus A is PAD(k).

Proposition 14. Let A be a Noetherian domain containing R with $K(A)$ algebraic over $K(R)$. If A is faithfully flat over R and R is a PAD(k), then A is a PAD(k).

Proof. Since a canonical morphism $\text{Spec}(A) \rightarrow \text{Spec}(R)$ is surjective. Let M be a maximal ideal of A and put $m = M \cap R$. Then $\text{Tr.deg}_k A = \text{Tr.deg}_k R = \dim R_m$ and $\dim R_m = \dim A_m$ by Going-Down Theorem. By the same way as the proof of Proposition 13, we can show that A is Hilbert. Since A is faithfully flat over the catenary ring R, A is also catenary. Thus A is a PAD(k).

Proposition 15. Assume that R be a PAD(k) and let m be a maximal ideal of R. Then R/m is algebraic over k.

Proof. The field R/m is a PAD(k) by Proposition 5. So by the fact stated in Remark 2, R/m is algebraic over k.

Proposition 16. Assume that R is a normal PAD(k). Let L be a finite separable field extension of the quotient field $K(R)$ of R. Let B be intermediate ring between R and L which is integral over R. Then B is a PAD(k).
Proof. By [N, (10.16)], the integral closure R_L of R in L is a finite R-module. Hence B is a finite R-module. So B is $\text{PAD}(k)$ by Theorem 12. □

Corollary 16.1. Assume that R is a $\text{PAD}(k)$ whose derived normal ring \bar{R} is Noetherian. Let L be finite separable extension field of the quotient field $K(R)$. Then the integral closure R_L of R in L is a $\text{PAD}(k)$.

Proof. By Proposition 13, \bar{R} is a $\text{PAD}(k)$. Note that R_L is integral closure of \bar{R} in L. Since is Noetherian, R_L is a $\text{PAD}(k)$ by Proposition 16. □

Proposition 17. Let \bar{R} denote the derived normal domain of a Noetherian domain R. If \bar{R} is a $\text{PAD}(k)$, then so is R.

Proof. The domain R is Hilbert by Lying-Over Theorem, which is seen in the same maners of the proof of Proposition 13 because \bar{R} is Hilbert and catenary (Proposition 11). Moreover $\text{Tr.deg}_k \bar{R}_m = \text{Tr.deg}_k \bar{R}_m = \dim \bar{R}_m \leq \dim R_m \leq \text{Tr.deg}_k \bar{R}_m$, where M is maximal ideal of \bar{R} lying over a maximal ideal m of R. Hence R is a $\text{PAD}(k)$. □

Let A be a ring and I an ideal of A. We recall that J is called a reduction of I if $J \subseteq I$ and $\sqrt{J^r} = I^{r+1}$ for at least one positive integer r ([L], [O]). It is easy to see that $\sqrt{J} = \sqrt{I}$ and $ht(J) = ht(I)$.

Proposition 18. Assume that a Noetherian domain R satisfies the condition : $\dim R = \text{Tr.deg}_k R := n$ and let I be an ideal of R. Then I has a reduction generated by $(n + 1)$-elements.

Proof. This follows from [L] or [O, (3.4)]. □

Corollary 18.1. Assume that R is a $\text{PAD}(k)$ with $\dim R = n$. Then each ideal I of R has a reduction J generated by $(n+1)$-elements.

References

