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Abstract :

The paper is concerned with an improvement over che symmetric accelerated
overrelaxation (SAOR) method for an iterative solution of large linear systems. At
first, the Chebyshev acceleration (or semi-iteration) procedure is introduced to the
SAOR method, and the Non-Adaptive SAOR-SI algorithm is developed. Next,
an adaptive procedure which estimates automatically the maximum eigenvalue of
the SAOR iteration matrix is constructed. Moreover the Partial-Adaptive SAOR-
SI algorithm including the adaptive procedure is proposed, and its characteristics
are cleared with numerical results. A comparison with the optimum SOR algorithm
is also given. It is finally proved that the proposed algorithms, Non-Adaptive
SAOR-SI and Partial-Adaptive SAOR-SI algorithms, are efficient for the iterative

solution.
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1. Introduction

We are often faced with linear systems arising from numerical solution of
partial differential equations by the finite diflerence method, the finite element
method or the other methods. For example, the difference solution of elliptic partial
differential equations is associated with steady states of potential, diffusion, fluid
flow, and many other physical problems. In such the linear system, its coeﬁic\ient
matrix is frequently very large, i.e, number of unknowns is oftentimes a few
hundred-sometimes several thousand! Taking account of storage and arithmetic
requirements for current computers, it may be advantageous to solve the linear
system with the iterative method rather than the direct method.

In this paper, we shall treat the iterative solution of large and sparse linear
system. We study on further development of the symmetric accelerated overrelaxa-
tion (SAOR) method which has been introduced in [2, 5, 6] for solving the linear
system

Au=b (1),
where A is the NXN real and nonsingular matrix, & is the NX1 given vector and
u is the NX1I vector to be determined. The SAOR method is understood to be a
two-sweeps scheme consisting of the forward and the backward AOR methods.
Under certain assumptions the SAOR method employing the optimum parameters
(v, ) converges nearly as fast as the AOR method, but it is mostly slower than
the AOR method in spite of extraneous works. The fact seems to preclude the
SAOR method. However, by a combination with the acceleration procedure such
as the conjugate gradient (CG) acceleration and the Chebyshev acceleration (or
semi-iteration), it is expected that the SAOR method converges faster by an order-
of-magnitude than the AOR method. Recently as an example of accelerated SAOR
methods, based on the CG acceleration procedure, the Non-Adaptive SAOR-CG
algorithm has been proposed in [6, 9] and then by applying the adaptive procedure
which determines the SAOR parameters (7, ) automatically during the iteration
process, the Adaptive SAOR-CG algorithm has been developed in [6, 9].

The objective in this paper is to present one more acceleration procedure with
the Chebyshev acceleration on the basic SAOR method. In the Chebyshev accelera-
tion, it is necessary to assume the SAOR parameters (7, ») and the spectral radius
of SAOR iteration matrix H(y, ). Thus we can consider three versions of the
Chebyshev acceleration: one is the non adaptive version (Non-Adaptive SAOR-SI

algorithm) which estimates neither the SAOR parameters (7, w) nor the spectral
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radius S(H(7y, w)); the other is the partially adaptive version (Partial-Adaptive
SAOR-SI algorithm) which improves adaptively the value of S(H(7, »)) where the
SAOR parameters (7, ) are fixed; another is the fully adaptive version (Full-
Adaptive SAOR-SI algorithm) which estimates both of (7, ») and S(H(7,0)).
Among them, we will propose the Non-Adaptive SAOR-SI and Partial-Adaptive
SAOR-SI algorithms. We also show some numerical results on the proposed al-
gorithms and give a comparison with the SOR algorithm employing the optimum

parameter (o).

2. SAOR Method.

Assume that the coefficient matrix A of (1) is symmetric and positive definite.

Without loss of generality, A may be then split into

A=I-L-U (2),
where I is the identity, and L and U are respectively the lower and upper triangular
parts of A. For the nth iterated vector u ™, the SAOR method is defined [5, 6]
as

u D =Ly, 0)u ™ ke (3)
and

w0 = Uy, 0)u D 4 py (4),
where v and o are respectively called the acceleration and overrelaxation para-
meters. Also L(7, ») and U(y, w) are respectively the corresponding iteration
matrices to the forward AOR and backward AOR methods [5, 6] expressed as

Ly, @) =(I=yL)[(1~o)[+(0—y)L+oU] = I—w(I—yL)-1A (5)
and

U(r, @) ==y (1) +(0=y)U+oL] = I-w(l—yU)"1A (6).
Eliminating « "2 from (3) and (4), we obtain

u ™D =H(y, 0)u™ +k(7, ) ; (7)

H(v, ©)=U(7, ©)L(7, ©) = [—o2(I—yU)""M(I—yL) ' A (8)
and

k(y, ©)=U(y, 0)kr+ks = U(y, 0)(I—yL) b+ (I—yU)"1b (9),

where H(7, ») is the SAOR iteration matrix, and M is defined by
M=} [(2~w)I+(o—7)B] (10),

in which B(=L+U) is the Jacobi iteration matrix. Notice that for y=w H(7, »)
is equivalent to the iteration matrix of the SSOR method [7].
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'

3. Non-Adaptive SAOR-SI Algorithm

Now, let A¥2 be the square root satisfying (AY 2)2=A, Then we can define

the matrices H'(7, »), L'(7, ») and U’(v, ») boing similar to H(v, »), L(7, ») and

ﬁMU('y, ), respectively, as follows:

H'(7, )= AY?H(y, ©)A™/? = U'(7, 0)L'(7, 0) (1D,
where

L'(y, ) =A"2L(7, 0) A712 = [—wAV2(]—yL) AV ? 12)
and

U'(y, 0)=A"20(y, ) A142 = [—wAV2([—yU)LAY? (13).
Since A is symmetric, we can readily see

U (v, @)= (L' (7, o))" (1),
which in view of (8) gives rise to

H' (7, 0)=(L(y, ©))7(L(7, )) (15).

If we choose v and o such that
0<w<2 and w+;21—(_§“’7<7<w+%;(—§—) (16),
in which m(B) and M(B) are respectively the minimum and maximum eigenvalues
of B, then the real symmetric matrix M defined by (10) is proved to be positive
definite (see [2, 6]). From the relation in (8), we obtain
I—H'(y, ©)=AV2(I—H(7,0))A™V?
=[wM2(I—yL) A 2] [eMV 2(I—yL)T AV ?] an,
which is symmetric and positive definite. Hence we can use the A¥2 as a sym-
metrization matrix [3] required in the application of the Chebyshev acceleration to
the SAOR method.
Let us define the nth iterated vector ¢ during the Non-Adaptive SAOR-SI
algorithm as
4D =g, 1 (0018 P +u @)+ (1—pp,)u 70 - (18),

where 8 ™ is the pseudo-residual vector represented by

S =H(7, w)u (D) +k(7’ w)_u (€D (19)’
also v, and p, are the Chebyshev parameters defined by
2
T 2 SCH (@) 20
and
m=1
— 1 2y 1
pz= (1=5 %) (21),

prs = (1= g 20u)™1, n>2
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in which ¢ is given by
_ S(H(y, ®) _ (22).

° T 2= S(H(y, )
In the non-adaptive algorithm the formulas (18)—(22) are simply iterated until a

suitable criterion for convergence is achieved. The algorithm is shown in the

< start >

data input
and
initialization

flowchart of Figure 1.

4

t exit

stopping test

next iteration

N

n=n+l

Figure 1: Flowchart of the Non-Adaptive SAOR-SI algorithm.

The eigenvalues of the SAOR iteration matrix H (7, ») are real, positive and
less than unity. In the application of the Chebyshev acceleration to the SAOR
method it is an idea to use the exactly maximum and minimum eigenvalues.
However, the rapidity of the convergence is affected little by the minimum eigen-
value because the minimum eigenvalue of the SAOR iteration matrix is very close
to zero. Thus it is sufficient to employ only the maximum eigenvalue. Also since
the maximum eigenvalue plays an very important role for convergence in the Non-
Adaptive SAOR-SI algorithm (see Table 1), we have to choose the maximum eigen-

value carefully as the initial data.

4. Partial-Adaptive SAOR-SI Algorithm

Let us introduce the partially adaptive procedure to the Non-Adaptive SAOR-

SI algorithm for estimating the spectral radius (maximum eigenvalue) S(H (v, »))
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Table 1 Comparison of the algorithms.

1/h= 20 40 60 80 100
Ogtlggx‘_‘i‘gnf;o}‘ 58 115 173 231 289
Non-Adaptive SAOR-CG
algorithm
(7, ®)=(1.40, 1.54) 13 23 34 44 53
(7, ®)=(opty, optw) 14 20 24 28 32
Adaptive SAOR-CG
algorithm
(F=0.85) 16 27 41 45 50
Non-Adaptive SAOR-SI
algorithm
(7, @)=(1.40, 1.54)
and 69 70 72 127 230
ME=0.99 ‘
(7, »)=(opt7, optw)
and 15 21 27 30 34
optimum ME

Partial-Adaptive SAOR-SI
algorithm (F=0.75)

(7, ©)=(1.40, 1.54) 28 58 79 106 133
(7, »)=(opty, optw) 21 31 39 46 52

of the SAOR iteration matrix H(7, w). The Partial-Adaptive SAOR-SI algorithm
is expressed as follows: for the nth iterated vector u ™

8O = (028 P+ D)t (1= ) D @23),
where 8™ is the pseudo-residual vector which is the same form with the one given

by (19), and u, and pn are the Chebyshev parameters defined by

-2
T 2 S H G, @) @
and
1; n=s
(1-Lopyr; nmsi1
prg1= 5 E) (25),
(1—’1'UE2P7¢)_1 ; n=s+2
in which
— Se(H(y,®))
T 2= Se(H(r, o)) (26)-

The partially adaptive version involves the parameter change test and the para-

meter estimation procedures.

(1) Parameter change test procedure.
We change S(H(7, »)) whenever

1|8 & || 4172 270’2 \F
s = (155

(27),
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where
p—n—s
and
1-y/1—0s?

A RS

Here F is the damping factor to be selected in

(2) Parameter estimation procedure.

the interval [0, 1].

Once we have decided to change S(H (7, w)), we take new value of
[S/k(H (7, @) Ixuw =max(Se(H (7, ®)), S'e(H (7, ®)))
where S’x(H (v, w)) are determined by the Rayleigh quotient

(W8 ™, WH(y, )8 ™)
(Wa (€] s W8 (€] )

< start )

\
data input
and
initialization

S'p(H(y, @) =

stopping test

no

parameter-change

test

no

F;ext iteration

ves

yes

t exit

changing
parameter

Figure 2: Flowchart of the Partial-Adaptive SAOR-SI algorithm.

h SAOR Method 7

(28)

(29).

(30,

(3D).
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If the new value is determined, we set s=n,
This partial_ adaptive procedure is shown in the flowchart of Figure 2.

In the partially adaptive procedure, there may be key question how we treat
the symmetrization matrix A2 in the computational program. It is almost impos-
sible to make the matrix Av? in practice, however for any vector v, by use of the
transformation

(AY 29, AV 2p) = (o, Av) (32),
Wwe can compute the AY 2-norm with simple procedure. In the parameter estimation
procedure, we employ the Rayleigh quotient with the Symmetrization matrix Az,
If the spectral radius estimated is beyond the unity, we set S(H(y, »)) =0, 999 and
then we do not change S(H(y, ®)) any more.

5. Numerical Experiments.

In order to examine our algorithms we work out two types of model problems
which involve the generalized Dirichlet problem with respect to the elliptic partial

differential equation

0 oU 0 U, _
%?(A%‘)+5}*(C‘ay)~0 (33),

in the unit square (0=2<1, 0<<y<1), where U=0 is imposed on the whole
boundary. Various choices of the coefficients A(z, y) and C(g, ¥) [8,9] are con-
sidered. We now deal with the first type (model 1) that A(z, y)=1 and C(x, v)
=1, i.e., the Laplace’s equation

2 52
T+ S =0 (34).

Here the five-points difference formula is adopted for the discretization of the mode]
problems. All the algorithms to be treated in the numerical experiments are
terminated when the iterated vector u ™ s satisfied by the following criterion :
& ™ |La72=lu ™ — ) 121076 (35),
where &€ ™ s the nth error vector for the exact solution of . Also the initial
vector # @ js chosen such as all its elements are equal to be 1/(1/k—1), where A

is the square mesh size.

(1) Characteristics of Chebyshev accelerations.
At first, we shall expose the characteristics of the Chebyshev accelerations on
the SAOR method. F igure 3 shows the iteration numbers required for convergence

in connection with the damping factor F in the Partial-Adaptive SAOR-SI algorithm.
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Partial-Adaptive SAOR-SI algorithm
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Figure 3: Iteration number versus damping factor for the Partial-Adaptive
SAOR-SI algorithm.
If we work with F being very close to unity, we can see that the spectral radius
S(H(7v, »)) of the SAOR iteration matrix H(7y, ») is changing much frequently.
With too small values of F, they are not changing often enough. However, as seen
from the result in the Figure 3, the effectiveness of the adaptive procedure is re-
latively insensitive to F only in view of the iteration numbers required for conver-
gence. Table 2, Table 3 and Table 4 show how the S(H(7,»)) have changed
during the adaptive processes with the damping factor F=0.65, 0.75 and 0.85,
respectively. It can be seen from the result in tables that the number of parameter
changes is too frequent when F is larger than some typical value, where the typical
value in our Partial-Adaptive SAOR-SI algorithm is found out to be 0.75. There-
fore such the selection of F causes the loss of computational time and the waste
of arithmetic works for the adaptive procedure. Thus ic can be suggested that

the selection of F is so much important. Figure 4 shows the convergence domain
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Table 2 Partial- Adaptive SAOR-SI algorithm (F=0.65).

Iteratlon Number S(H(y, w))

h= 1/20 4 0.74958
(7 ®) = (1.7795, 1.7617) 9 0.81042

21 Convergence
h=1/40 3 0.76788
(7, @) = (1.8745, 1.8557) 7 0.88029
19 0.90180

31 Convergence
h=1/60 3 0.82702
(7, @) = (1.9205, 1.9012) 9 0.91158
17 0.93307

37 Convergence
h 1/80 3 0.86159
(7, @) = (1.9444, 1.9249) 9 0.91313
15 0.94614

47 Convergence
h 1/100 3 0.86779
(7 ®) = (1.9491, 1.9296) 9 0.91740
14 0.95437

55 Convergence

Table 3 Partial-Adaptive SAOR-SI algorithm (F=0.75).
Iteration Number S(H(7, w))

h=1/20 3 0.70302
(7 @) =(1.7795, 1.7617) 5 0.78642
12 0.81178

21 Convergence
h=1/40 3 0.76788
(7, ©) = (1,8745, 1.8557) 6 0.86041
10 0.89626

31 Convergence
—1/60 3 0.82702
(7 ) = (1.9205, 1.9012) 7 0.88438
11 0.92686
30 0.93395

39 Convergence
—1/80 3 0.86159
(7, ) = (1.9444, 1.9249) 7 0.89285
11 0.93243
17 0.94779

46 Convergence
~1/100 3 0.86779
(7, ©) = (1.9491, 1.9296) 7 0.86754
11 0.93865
16 0.95657

52 Convergence
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Table 4 Partial-Adaptive SAOR-SI algorithm (F=0.85).

11

h=1/20
(7, ») = (1.7795, 1.7617)

(7, w) = (1.8745, 1.8557)

h=1/60
(7, @) = (1.9205, 1.9012)

h=1/80
(7, ®) = (1.9444, 1.9249)

h=1/100
(7, w) = (1.9491, 1.9296)

Iteration Number S(H(7, »))
2 0.53549
3 0.66000
4 0.71843
5 0.75114
7 0.78580
10 0.80772
22 Convergence
2 0.62930
3 0.74619
4 0.77775
6 0.80794
7 0.84581
9 0.87051
10 0.89021
15 0.89937
32 Convergence
2 0.67081
3 0.80207
4 0.83417
7 0.85074
8 0.87761
10 0.89210
11 0.90950
14 0.92131
17 0.93071
34 0.93381
41 Convergence
2 0.67279
3 0.82563
4 0.86837
7 0.88104
10 0.89841
11 0.91549
14 0.92971
15 0.94025
20 0.94627
29 0.95031
46 Convergence
2 0.65452
3 0.82459
4 0.87519
7 0.88801
10 0.90357
11 0.92038
14 0.93654
15 0.94857
19 0.95435
25 0.95891
52 Convergence
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2.0 [
-3
g
L . Iteration number
3 for convergence < 100
1.0k SAOR
X algorithm
>
o ’
L Non-Adaptive SAOR-SI
= algorithm
\ -
3
i -
P X J
»
0.0 -
0.0 1.0 2.0

acceleration parameter (y)
Figure 4: Convergence domain.
h =1/20

to the SAOR parameters ¥ and s(=w/7) in the SAOR algorithm and Non-Adaptive
SAOR-SI algorithm, where the input data S(H(y, »))=0.99 is employed. By com-
bining with the Chebyshev acceleration procedure, the convergence domain in the
SAOR method is extended, and thus we can expect a fast convergence for a rough
selection of (7, ) in both of the Non-Adaptive and Partial-Adaptive SAOR-SI

algorithms.

(2) Comparison with other algorithms.

Here we present two examples for comparison. One is the comparison with
the Partial-Adaptive SAOR-SI algorithm, the Non-Adaptive SAOR-SI algorithm and
the optimum SOR algorithm. The other is the comparison with the Chebyshev
acceleration and conjugate gradient (CG) accceleration on the SAOR method, i.e.,
the Non-Adaptive and Adaptive SAOR-CG algorithms. Table 1 gives the iteration
numbers required for convergence in all the algorithms to be compared, i.e., the
optimum SOR algorithm, the Non-Adaptive SAOR-SI algorithm, the Partial-Adaptive
SAOR-SI algorithm, the Non-Adaptive SAOR-CG algorithm and the Adaptive SAOR-
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CG algorithm. In three of the Non-Adaptive SAOR-SI algorithm, the Partial-
Adaptive SAOR-SI algorthm and the Non-Adaptive SAOR-CG algorithm, the SAOR
parameters are taken as (7, »)=(1.40, 1.54) and (7, »,), where (7, ;) are the
optimum parameters determined experimentally. In the Adaptive SAOR-CG
algorithm, the SAOR parameters (7, w) are determined automatically during the
iteration process. Also the input data for the estimates of S(H(7, »)) in the Non-
Adaptive SAOR-SI algorithm are 0.99 and the experimentally convenient value.
The SOR parameter » is taken as w=2(1+/1—M(B)?)™, where M(B) is the
maximum eigenvalue of the Jacobi iteration matrix B. As expected, both of the
Partial-Adaptive and the Non-Adaptive SAOR-SI algorithms have achieved the con-
siderably faster convergence than the SOR algorithm. Next, let us consider a com-
parison with the Chebyshev acceleration and CG acceleration on the SAOR method.
In the case of the non adaptive version, the effectiveness of both the algorithms
with the optimum parameters are almost comparable. However, taking account
that the Non-Adaptive SAOR-SI algorithm requires not only the SAOR parameters
(7, @) but also S(H(7, »)), it is advantageous for the CG acceleration to require
only the SAOR parameters (7, ») and to be at least comparable in the effectiveness
to the Non-Adaptive SAOR-SI algorithm. In the case of the adaptive version, we

can suggest that the Partial-Adaptive SAOR-SI algorithm is inferior to the Adaptive
SAOR-CG algorithm because of the same facts with the above.

(3) Further applications.

We try to test the feasibility and efficiency of the Chebyshev acceleration on
the SAOR methqd for more general problems, i.e., we choose the coefficients Az, y)
and C(z, y) in (33) as in Table 5. Table 6 and Table 7 give how S(H(7, »))

Table 5 Further application (model 2).
Ax, y)=C(x, y)=el0 @ty

1/h 20 40 60 80 100

SOR algorithm 72 161 241 321 401
Non-Adaptive SAOR-SI

algorithm

ﬂﬁ‘fo:ggl"m’ 1.54) 88 90 90 89 89

Partial-Adaptive
SAOR-SI algorithm

%7,:0()))6; (opt7, optw) 29 32
Adaptive SAOR-CG
algorithm

F=0.85 26 61 87 102 95

42 50 53
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Table 6 Partial-Adaptive SAOR-SI algorithm (F=0.65).

(mode! 2)
Iteration Number S(H(7, o))
h=1/20 7 0.50367
(v, ) = (1.7795, 1.7617) 0.58417
11 0.61273
14 0.62291
16 0.64710
19 0.65234
22 Convergence
h=1/40 4 0.57434
(7, ©) = (1.8745, 1.8557) 6 0.61034
7 0.68946
8 0.71758
9 0.73656
14 0.75212
16 0.76736
22 0.78088
25 0.79222
29 0.80075
32 Convergence
h=1/60 4 0.75123
(v, ) = (1.9205, 1.9012) 9 0.81664
16 0.83132
25 0.84939
29 0.86199
34 0.86709
40 0.87400
42 Convergence
h=1/80 4 0.79820
(7, ®) = (1.9444, 1.9249) 5 0.84770
11 0.86411
18 0.87804
21 0.88799
30 0.89542
34 0.90219
40 0.90454
47 0.91079
50 Convergence
h=1/100 4 0.79256
(7, ®) = (1.9491, 1.9296) 5 0.80113
6 0.85462
11 0.87241
13 0.88708
20 0.88816
23 0.90050
32 0.90342
36 0.91076
42 0.91410
50 0.91869
53 Convergence
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Table 7 Partial-Adaptive SAOR-SI algorithm (F=0.75).

(model 2)
Iteration Number S(H(7, w))
h=1/20 6 0.56285
(7, ) = (1.7795, 1.7617) 9 0.58572
10 0.61476
14 0.62139
16 0.64625
18 0.65025
20 0.65807
22 Convergence
h=1/40 4 0.57437
(7, @) = (1.8745, 1.8557) 6 0.61034
7 0.68946
8 0.71758
9 0.73656
16 0.76236
22 0.77127
24 0.77806
26 0.78611
28 0.79278
30 0.79755
32 0.80070
35 Convergence
h=1/60 4 0.75123
(7, @) = (1.9205, 1.9012) 8 0.76606
9 0.81071
11 0.82310
12 0.82439
19 0.83721
20 0.84306
24 0.84765
32 0.85487
36 0.86399
41 0.86838
44 0.87018
47 Convergence
h=1/80 4 0.79820
(7, ©) = (1.9444, 1.9249) 5 0.84770
11 0.86411
18 0.86988
19 0.87019
20 0.87838
23 0.88555
26 0.88982
34 0.89071
38 0.89804
43 0.90380
46 0.90483
50 0.90619
54 0.90925
57 Convergence

continued
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h=1/100 4 .82995

0
(7, ®) = (1.6491, 1.9296) 6 0.83876
' ' 11 0.87033
13 0.88680
26 0.89385
28 0.89840
30 0.90131
32 0.90283
34 0.90309
44 0.90495
46 0.90763
48 0.91007
51 0.91343
54 0°91486
58 0.91587
62 0.91769
64 Convergence

have changed during the adaptive process with the damping factors F=0.65 and
F=0.75 and the SAOR parameters (v, »)=(1.40, 1.54). It shows that the choice
of the damping factor F=0.65 is better than that of F=0.75. Thus it will be said
that the choice of the damping factor depends on the problems, but it may be
enough to choose the damping factor in our adaptive procedure F=0.65—0.75, or at
least F=0.55 in order to work out effectively. For comparison purposes, we show
the iteration numbers required for convergence in the Non-Adaptive and Partial-
Adaptive SAOR-SI algorithms and the SOR algorithm with &=2(1++/1—-M(B)?)™.
It is clear from the result in Table 5 that the Non-Adaptive and Partial-Adaptive
SAOR-SI algorithms guarantee their feasibility and efficiency for more general

problems.

6. Concluding Remarks.

In this paper, we propose two versions of the Chebyshev acceleration procedure,
i.e., Non-Adaptive SAOR-SI algorithm and Partial-Adaptive SAOR-SI algorithm.
The present algorithms are based on (i) the formulation of the SAOR method, (ii)
the introduction of the Chebyshev acceleration procedure and (iii) the development
of the partially adaptive procedure. |

In the numerical experiments we have shown that the Partial-Adaptive SAOR-
SI algorithm estimates S(H(7, »)) effectively and converges in a few iterations. It
can be seen from the result in Table 1 and Table 5 for comparison purposes that
the Non-Adaptive and the Partial-Adaptive SAOR-SI algorithms are far superior to
the optimum SOR algorithm. However, in comparison with the Adaptive SAOR-CG
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algorithm we have obtained negative (or non positive) result in the following items:

(1) the iteration numbers required for convergence are comparable,

(2) the amount of the computational works in the Partial-Adaptive SAOR-SI
algorithm are slightly smaller than that of the Adaptive SAOR-CG algorithm, and

(3) the Partial-Adaptive SAOR-SI algorithm requires the SAOR parameters (v, ®)

as the initial (input) data, but no parameter requires in the Adaptive SAOR-CG
algorithm.

The disadvantage of (3) is a very important factor in the application to more
general problems. This disadvantage may be removed by a development of the Full-

Adaptive SAOR-SI algorithm, also by further application to more general problems.
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