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Abstract

In this paper, a symmetric accelerated overrelaxation (SAOR) method is proposed,
and the convergence theorem is derived. An SAOR-CG algorithm is also presented,
which is formulated by introducing the conjugate gradient (CG) procedure to the
SAOR method. Moreover, some results obtained in numerical experiments are

shown.

1. Introduction

Iterative solutions of linear systems generated by discretizations of partial
differential equations are studied. The linear systems are generally characterized
by the sparseness of the matrices and a pattern of their nonzero elements. These

facts are very advantageous for computers and has promoted the use of iterative
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methods. As the basic iterative methods?’, the Jacobi method, the Gauss-Seidel
(GS) method and the successive overrelaxation (SOR) method are known. The
accelerated overrelaxation (AOR) method?, which has been recently proposed,
covers® the basic iterative methods and includes two of the acceleration and relaxa-
tion parameters. Our purpose is to improve the AOR method. In this paper, we
will first suggest that the AOR method is an extrapolated SOR (ESOR) method.
Next, we will propose the symmetric AOR (SAOR) mothod® and give the con-
vergence theorem. Moreover, in order to accelerate the SAOR method, the SAOR-
CG algorithm will be presented by introducing the conjugate gradient (CG) pro-

cedure® © Some numerical results are also shown.

2. Basic Equations
We consider the linear system

Au=b (1),
where A is the coefficient matrix of order N and b is a given vector. Then, the
unique solution «

i=A"b (2)
exists if A is nonsingular. So, we assume that A is nonsingular, and that all the
diagonal elements of A are nonzeros. We treat the iterative method (or the station-
ary linear iterative method) expressed as

u(n+1):Gu('ﬂ) +b (3)’
for the iterated vector u at the n-th stage (n=0, 1,... ), where G is the itera-
tion matrix and u‘ is arbitrary initial vector. If I—G is nonsingular, there exists

the unique solution u satisfying

(1-Gu=h (4).
The iterative method converges if and only if
0(G) <1 (5),

where p(G) is the spectral radius of G. We define the error vector €™ as

g — @ _gq (6).
Then, we have

EM =GENMD = | =GrED® (7)
and, for suitable vector and matrix norms || « ||,

e ™ || Z NIG™]] « lle @] (8).
For arbitrary vector €, the norm ||G*|| gives a sharp upper bound for the ratio

€@ || /ll€@ ||, that is,
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G™|| = lle™ || /]|e @ || (9).
Therefore, (3) converges if and only if (5) holds.®

3. AOR Method and Extrapolation Method

Now, we consider the coefficient matrix A in (1) splitted as

A =D-C.-Cy (10,
where D is the diagonal part of A and Cp, Cy are the strictly lower and upper
triangular part of A, respectively. Based on the splitting (10), a stationary linear
iterative method is generally expressed as

(1D +a2C)u ™ = (a3D +a,CL+asCo)u ™ +agb (11),
where «; (=1, 2, ..., 6) is the coefficients to be determined and u‘® is arbitrary
initial vector. As a matter of course, since the coefficient a1 is nonzero, we obtain

(D+aC)u®™ = (as'D+a,/CL+as’'Cu)u™ +ag'b (12),
where «)/=a;i/a; (i=2, 3, ..., 6). Here, in order that (12) is consistent with the
linear system (1), the following equation must be satisfied :

(1—as")D+ (a2 —a,/)Cr—as’'Cu = agA; ay’ 40 (13).
From (10) and (13), we have

l—as'=a, o —a/=—as and —as’'= —as' 14).
From (14), we can choose as
042,:*'7, CU3,—_—1—0.), w4I:a)_7v and a5,:a6,:w (15>,

where v and w40 are any parameters. From (12) and (15), we have finaly the
equation

(I—yL)u®™ = [(1—w) I+ (0—7)L+0UJu™ +oc (16),
where I is the unit matrix of order N, and L, U and c are

L=D"1Cy, U=D"1Cy and c=D"1b 17,

respectively. We thus define a general iterative method as follows.

Definition 1 (AOR method).?’
The iterative method expressed as
U@ =L(v,0)u™ +w(l—yL) c (18)
for the iterated vector u™ at the n-th stage (n=0,1, 2, ... ) is called the accelerated
overrelazxation (AOR) method, where u® is an arbitrary inital vector and L(y, ») is the
AOR iteration matrix defined by
L(7,0) = I=7L)[(A—o)I+ (e—7)L+wU] (19).

Here, v and ©=~0 are the acceleration and relaxation parameters, respectively.
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Table 1 Basic iterative methods.

(7, ) Method i-th Eigenvalue
©, D Jacobi Method pi (real)
(1, 1 Gauss-Seidel Method ni? (real)
(7, 7) or (v, w) SOR Method Ai(7, v) (complex)

The AOR method has two of the characteristics, as follows. At first, by
specifying the pair (7, ») in (18), the basic iterative methods are obtained, as given
in Table 1. Next, using the extrapolation parameter defined by s=w/y (y£0),
L(7, ) can be rewritten as

L(7, @) =L(v, 7s)
=sL(v, ) +{1—s)I (20),
where L(v, v) =(I—yL)"'[(1—7)I+yU] becomes the SOR iteration matrix with the
acceleration parameter y. Therefore, the AOR method is equivalent to the extrapola-
tion method applied to the SOR method with L(7, 7),i.e., to the extrapolated SOR
(ESOR) method. The extrapolation method applied to the basic iterative methods

are similarily obtained, as given in Table 2.

Table 2 Extrapolation methods.

i-th Extrapolation
(v, ) Method Eigenvalue Parameter
0, w) Extrapolated Jacobi Method (I—w)+op; w
1, o) Extrapolated GS Method (1—0)+wu? ®
(7, s7) ESOR Method A—=s)+r:(7, 7) s

4. Symmetric AOR method

Let us define an improvement over the AOR method.

Definition 2 (Unsymmetric AOR method).

The unsymmeric AOR (USAOR)method is defined as
u @/ = L(yr, wr)u™ +op(I—yrL)c (21)
and
u et = U(yp, wp)u ®*1 2 4 og(I—ygU)"1c (22),
for the iterated vector u™ at the n-th stage (n=0,1, ... ), where
L(yr, or) = (I—7rL) " [(1 —0p)I+ (w0r—7r)L +wrU] (23)
and

U(ys, ws) = (I—vsU)"[(1 —wp)I+ (wp—v8)U+wsL] (24).
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Also, v, wr, yp and wp are the acceleration and relaxation parameters of which the
subscripts F and B denote the forward and backward iterations, respectively. Note that

(21) and (22) are the forward and backward AOR methods, respectively.
Lemma 1.
The product of the iteration matrices of the USAOR method defind by (21) and (22)
U(ys, ws)L(7r, wr) (25)
has nonnegative cigenvalues if and only if
ve=7rF and wp=wr (26).
(Proof). Let A!/2 be the positive definite matrix satisfying (A!/2)2=A. Then, we
define the matrices L'(¥, wr) and U’(yg, ws) as
L'(yr, wp) = A'/2L(yF, o) A71/2 (27),
U'(yn, ) = A*/2U(7s, @) A7 /2 (28),
which are similar to L(vp, wr) and U(ys, ws), respectively.
On the other hand, from (23) and (24) we have
L(yr, wr) = I—wp(I—7¢L)7IDA
= I—wp(D—7rCL)'A (29),
and
U(vg, wg) = I —wp(I—ysU)ID1A

=I—wp(D—7sCr) A (30),

respectively. Also, we know

C.=DL and Cy=DU=C." (31),
since A is symmetric. Thus, for (27) and (28) we obtain

L'(yr, or) = [—wpAl/2(D--ysCpL) 1AL /2 (32)
and

[L'(7r, 0p)]" = I—wrAl/2(D—7eCy) Al /2 (33).
Here, if ys=7r and wp=wr, we have

[L'(yror)]" = U'(7e, on) (34).

Therefore, we have
U’ (s, ws)L'(vr, wr) = [L'(vr, @r) J"L' (7r, ©F) (35).
Namely, (35) is symmetric matrix. Hence, it is obvious that (25) has nonnegative
and real eigenvalues. (QED).
From Lemma 1, the symmetric AOR method is defined, as follows.
Deffinition 3 (Symmetric AOR method).
The symmetric AOR (SAOR) method is defined as
U@t/ = Ly, 0)u™ +w(I—yL)™c (36)
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and
u(n+1) J— U(')', w)u(n+1/2) _’_w(l__.f)/U)‘lc (37).
for the iterated vector u™ at the n-th stage (n=0,1, ...).

For the convenience sake, (36) and (37) can be written into

u @ =H(y, 0)u®) +k (38),
where the SAOR iteration matrix H(y, w) is

H(r, @) = U7, @) L(7, ) (39)
and

k = oU(y, o)(I—7L) lc+o(I—yU) ¢ (40).

From Lemma 1 and Definition 3, it is ‘known that the SAOR iteration matrix H(y, »)
has nonnegative and real eigenvalues.
Corollary 1.

If the parameters v and o satisfy the equality of

="y (41),
the SAOR method is equivalent to the symmetric successive overrelaxation (SSOR)

method.

5. Convergence Theorem of SAOR Method
In this chapter, we present the convergence the theorem of the SAOR method.

We consider

H' (v, 0) = AV2H(7y, 0)Al/2 (42),
which is similar to the SAOR iteration matrix H(y, »). Then, (42) can be rewritten
into

H (7, 0) = 1—0[2—7)P'+(v—)Q'] (43),
where

P’ = [AV2(D~7Cy)™1D1/2] [A1/2(D—yCy)3DV/2]" (44)
and

Q = [A1V2(D—7Cy)1AY2] [AV/2(D—Cy) 1 AL/2]T (45).

Since (D—7yCy) is nonsingular, the matrices P’ and Q' is symmetric and positive
definite, which have the positive eigenvalues p and q. Then, the eigenvalue h(y,
w) of H' (7, ») is given by

h(7, w) =1—-w[(2—=7)p+(7v—w»)q] (46).
Therefore, the convergence theorem of the SAOR method can be derived, as follows.
‘Theorem 1.

If the parameters v and o satisfy the relation
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2>yzZ0>0 (47),
then the SAOR method converges.
(Proof). We can rewrite (43) as

[-H'(7, ») = 0[P +(v—0)Q'] (48).
Since P’ and Q' are symmetric and positive definite, and since H'(y, ») is nonnega-
tive definite, I—H’(7, ») becomes positive definite for 2>y=w0>0. Therefore, all the
eigenvalues h(y, w) are less than the unities. Hence, we readily find that the
spectral radius p(H(y, »))<<1 for 2>y=w>0.
Corollary 2.

For v=w the SAOR method (, i.e., the SSOR method) converges if
2>v>0 (49).

6. Symmetric AOR-CG Algorithm

Let us show an example of the acceleration of the SAOR method. We introduce
the conjugate gradient (CG) procedure. As stated in the previous chapter 5, we
note that all the eigenvalues of H(y, w) are real and nonnegative, and that they
are also less than the unities. Our CG procedure, which is called the SAOR-CG

algorithm, can be formulated, as follows :

UPD = oo 1 [2n18 @ +u® o+ (1—ppy)u @D (50),
where § ™ is the pseudo-residual vector defined by
3™ = H(y, ®)u™ +k—u®™ (51).

Also, v, and p, are given by

S m , H , S M _
Va1 = [1— © (3(71)(,2/3'2))”)'” 2 I (52),
and
nt S , S 1 .. )
Pny1 = [1—1{}1;{17 * (8<(n—i) ;3 (n*l)) ) ° Pn ] ! (53)

From (51) and (52), we have

8™ — pralrnaH(7, )8 ™ 4 (1=vay)8 @ 14 (1= pay)d ™0 (54).
In addition, for this algorithm the error vector €™ can be expressed as

€™ =Q.(H(7, ©))&® (55),
where Q,(H(7, »)) is the n-degree matrix polynomial and relates to the following
algebraic polynomials :

Qo(x) =1,

Qi(X) =viXx+1—v;
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and

Qn+1(x) = Pn+1[l’n+lx +1 '—Vn+1]Qn(X) + (]. —Pn+1)Qn—1(X) (56)

7. Numerical Experiments

In numerical experiments, we treat the simple boundary value problem for

elliptic partial differential equation or the so-called model problem® expressed as

(a) L7, »)
Y=0
-0.4+ e=1
0.4
_ha + + + + OQW\.%
(b) H=(7, )
Y=1.6
ok w=1.6
C.4T
o mm;m: + 4 l:_.‘s
() Qi(H(7, »))
Y=1.6
-0\4'L w=1,6
0.4
o + + + :* &t + t + R
(d) Q:(H(7, »))
7=1.6
w=1.6

-g.4d

Fig. 1 Eigenvalues of iteration matrices L(0, 1), H(7, w) and Q.(H(7, »)).
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Vi(x,y) =0; (X,y)e8 (87)
and

¢(xX,y) =8 y); (X,y)E08 (58),
where V2 is the two-dimensional Laplacian, g(x, y) is the continuous function defined
on the boundary ¢02 and 2 is the unit square domain. We use the well-known five-
points difference formula. Fig. 1 shows the distribution of the eigenvalues of the
Jacobi and SAOR iteration matrices and the matrix polynomial Q,(H(v, »)) generated
during the SAOR-CG process. Fig. 2 shows the norm ||§™ || of the error vectors,
which is assumed to be continuous function of the iteration number n. Here, the
mesh size h=1/10 is taken, and the acceleration and relaxation parameters are

chosen to be y=1.6 and o=1.6, respectively.

o
o
Eo
W
o
P
=
L - Jacobi Method
1
—y
& SAOR
= SAOR-CG
-
T T T T T T T T T T 1
o 50 100 150 200 250 3oa

ITERATION NUMBER

Fig. 2 Graph of log {|¢ ™ || versus iteration number .

8. Conclusion

We proposed the SAOR method and presented the convergence theorem. As
an extension of the SAOR method, we also presented the SAOR-CG algorithm. We
confirmed the effectiveness of the SAOR method and the SAOR-CG algorithm by
examining the distribution of the eigenvalues and the error vector. In the future,

we would study on the adaptive procedure for the SAOR-CG algorithm.
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