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Abstract - For a generalized exponential transmission line the effect of the line-
constants and the taper on the wave propagation is discussed. Especially the condi-

tion for distortionless propagation can be clarified.

The wave propagation along uniform transmission lines has been investigated
in detail, whereas for nonuniform transmission lines a clear explanation has not been
made. It thus is interesting to consider the effect of the line-constants and taper of
a nonuniform transmission line on the wave-propagation. In the paper we deal with
the generalized exponential-tapered transmission lines.

We consider a class of lossy nonuniform transmission lines, in which the time-

invariants,
6 = R(z)/L(z) and o4 = G(2)/C(2), (D

are independent of z, where z denotes the physical length variable, and L(z), R(z),
C(z), and G(z) are, respectively, the distributed inductance, resistance, capacitance,
and conductance per unit length at the length, z, from the exciting end. In the

generalized exponential-tapered transmission lines, the time-invariant,

R 2 __
4, = ¥LJC sz ¥C/L, (2)
and/or the time-invariant,
T
4= YC/L — 5 YL/C (3)

are independent of the electrical length variable,

z=[ VI® CO @ (4
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The telegraph equation for a generalized exponential-tapered line can be written

as
AW (D) fx 1)) ~ W) (g Sz, D +2p- o fla, D+ f(z, ) =0 (5)

where ¢ denotes the time variable, and
2p=03c+ Osn,
W=\/C/L and ¢*=0s.0:,+4, provided f denotes the voltage,
W=+/L/C and ¢®=0,.0:n+4; provided f denotes the current.
If two initial conditions, f(x, 0) and f:’(x, 0), and one boundary condition, f(0, %),

are given for the equation in (5), then the solution can be obtained by applying the

technique of the two-dimensional Laplace transformation.> The result is
[z, 8)=Y%e Wi (z){W(x+t)f(x+t, 0)+W(x—2t)f(x—t, 0)}
+ope Wi(z) [T WESE, 0)dE

+7T (o)

~hphe W) [ ) [T WOSE, 0)dEdr

~T (
— o kte Pt W-1(x) f : Ji(ED) T () (Wi{x+T ()} fle+T(z), 0}
+W{x—T)} fle—T(z), 0})dr

+he W) [ WS 00k

z+T ()

—thkemW-i(z) [ [T W fr &, 0)dkde

+W(0)e " W(x) f(0, t—x)
—EW(@2 W) [ e (kX (@} XS0, t—c)de (6)

where
W(—z)=W(=), f(—z, 0)=—f(z, 0),
fi'(—z, 0)=—f(z, 0), f(0, £)=0 (¢t<0),
k=2, T()=vVE—722, X(r)=+t2—2%

The first six terms of the solution in (6) are caused by the initial stimulus,
whereas the final two terms are caused by the boundary stimulus. The first of the
six terms caused by the initial stimulus implies two waves moving in opposite direc-
tions along the transmission line. The first of the two terms caused by boundary
stimulus signifies that the boundary stimulus, or the signal, propagates away from
the excitor end. Their propagating velocities, which are equal each other, are

independent of the electric length variable, x, but they depend on the physical
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length variable, z, that is,

velocity = 1/v/L(z)C(z) (7)
If the product of L(z) and C(z) is not a function of z, then the propagating velocity
is also independent of z.

For a lossy transmission line, all the six terms caused by the initial stimulus
decay with time elapsed, and the first of the two terms by the boundary stimulus
decays spatially. Especially, for a lossless transmission line the second and third
terms in (6) vanish, and all the remainders decay with neither time elapsed nor
space passed.

Next, we examine the effect by the value of £ In the general case of 450,
the integrals of Bessel function, J;, appear in some terms, and these terms thus are
vibratory. As stated above, in the lossy line of £s40 all the terms caused by the
initial stimulus decay with time elapsed and the first of the two terms by the
boundary stimulus decays spatially, whereas the final term by the boundary stimulus
does not decay but remains and it arises the cause of distortion. In other words, if
k=40, the boundary stimulus, or the signal, does not propagate simply as wave but
leaves a residue serving as distortion after all the stimuli have passed through a
point. In the special case of £=0, all the stimuli propagate in distortionless, generally,
with decay with both time elapsed and space passed, for the vibratory function, J,
vanishes.

A summary of above statements is as follows: All the terms caused by the
initial stimulus decay with time elapsed. The first of the two terms caused by the
boundary stimulus decays spatially, while the final term by the boundary stimulus
does not decay but remains as a cause of distortion when £=40. If k=0, then the
final term is absent originally. Thus the expression, £=0, indicates the condition
for distortionless propagation.

The condition, £=0, also can be written as

44 = (05— 0p)? (8)
where 4 denotes either 4, or 4, as stated above. Since both of the time-invariants,
os. and o, are real, 4 must be real and non-negative in order to be distortionless.
If the taper of the line is hyperbolic cosine-squared or exponential or hyperbolic
sine-squared, then 4>0. If the taper is uniform or square, then 4=0. If trigono-
metric cosine-squared, then 4<C0. Therefore, in the case of the five tapers except the
trigonometric taper the transmission lines can be distortionless provided the condi-

tion in (8) holds.
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