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1. Introduction

The investigations for uniformly distributed sequences have a long history of more

than one hundred years. The Kronecker’s approximation theorem is well-known as

the starting point of the development result of the theory of uniformly distributed

sequences. In 1884, Kronecker proved that irrational rotations are dense in the unit

interval. At the beginning of 1900’s refinements and generalizations of Kronecker’s

theorem were established by various researchers such as Bohl, Sierpinski, Hardy–

Littlewood, Weyl etc. Especially, in 1916, Weyl [27] showed that irrational rotations

are uniformly distributed sequences mod 1, who used the method of Fourier analysis.

After his results, the investigations for uniformly distributed sequences, especially

irrational rotations, were developed in the number theory, the probability theory

and various fields. For example, many researchers, such as Hardy–Littlewood, Os-

trowski, Hecke, Behnke etc, gave their results for the lattice point problems, the

problems of Diophantine approximation and so on. Particularly, Ostrowski intro-

duced an expansion of a natural number based on continued fraction expansion for

an irrational number, later called as Ostrowski expansion. Mori and Takashima [15]

recently studied the distributions of leading digits of nth power of some integers,

with applying the approximation of an irrational number α by its nth convergent.

In this dissertation, we develop their idea of [15] and we introduce its refinement,

“rational rotation approximation”. We consider not only the rational rotation ap-

proximation but also the Ostrowski expansion and we study important behaviors of

irrational rotations, such as the position of point of the irrational rotation itself, the

behaviors of partial sums of irrational rotations and the behaviors of discrepancies

of irrational rotations. In case that an irrational number α has large partial quo-

tients, our methods are very useful for studies of irrational rotations and we give

some formulas and estimates for the above behaviors. Furthermore, we give the

mathematical explanations for the unusual behaviors of irrational rotations based

on such α.

In Section 3, we apply the continued fraction expansion and rational rotation

approximation to observe the behavior of the position of each point of irrational
1
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rotations. It is easily seen that rational rotations
{
ipn
qn

}
(i = 1, 2, 3, . . .) are periodic,

where pn
qn

is the nth convergent of an irrational number and {x} denotes fractional

part of a real number x. By applying the periodicity of
{
ipn
qn

}
, we give the exact

formula which determines the position of each point of an irrational rotation.

Note that the mean of the uniform distribution on [0, 1) is equal to 1
2
and the

variance of the uniform distribution is equal to 1
12
. In Section 4, we discuss the

first order partial sums
∑n

i=1

(
{iα} − 1

2

)
: the fluctuation from the mean 1

2
, and we

also discuss the second order partial sums
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
: the fluctuation

from the variance 1
12
. The studies of the partial sums

∑n
i=1

(
{iα} − 1

2

)
were initiated

by Hardy–Littlewood [5], Ostrowski [18], Hecke [7], Behnke [2], Khintchine [10], [11]

and so on in the early 20th century. We give an exact formula for the above sum∑n
i=1

(
{iα} − 1

2

)
by applying rational rotation approximation, decomposition based

on Ostrowski expansion and cancellation techniques. Our calculations are different

from those in Ostrowski [18] because we use cancellation techniques while Ostrowski

used direct calculations. Especially, for irrational rotations based on α with large

partial quotients, we give mathematical explanations for “quadratic-function-like”

repetitions shown in Fig.1 and Fig.2.

It is well-known that π − 3 has [0; 7, 15, 1, 292, 1, 1, . . .] as its continued fraction

expansion. In case that α = π − 3, the behaviors of the partial sums show positive

“quadratic-function-like” repetitions caused by its 4th large partial quotient 292.

We also know that log10 7 has [0; 1, 5, 2, 5, 6, 1, 4813, 1, 1, . . .] as its continued fraction

expansion . In case that α = log10 7, the behaviors of the partial sums show negative

“quadratic-function-like” repetitions caused by its 7th large partial quotient 4813.

Next, we consider the second order partial sums
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
. We

give an exact formula for such sums, slightly different from the formula in [21].

Moreover, we provide some estimates from our exact formula so that we explain the

effects of large partial quotients on the strange “cubic-function-like” repetitions of

the sums shown in Fig.3, Fig.4, Fig.5 and Fig.6.

In Section 5, we consider the estimates of discrepancies of irrational rotations.

The notion of discrepancy was introduced to measure the speed of convergence to

the uniform distribution.



3

Setokuchi and Takashima [23] and Setokuchi [22] gave estimates for discrepan-

cies of irrational rotations with a single isolated large partial quotient by refining

Schoissengeier’s results ([19], [20]). They gave some mathematical explanations of

appearance of quadratic curves and they call such curves hills. Furthermore, Se-

tokuchi [22] studied that such hills appear many times in long term behavior of

discrepancies under specific conditions.

On the other hand, we give the estimates for discrepancies of irrational rotations

by rational rotation approximation. First, we use the method of rational rotation

approximation and we give a rough upper bound for the discrepancy of irrational

rotations in terms of the continued fraction expansion of α and the related Ostrowski

expansion. Then, we give simply an another proof of Weyl’s lemma.

Secondly, we consider the estimate of discrepancies of irrational rotations with

single isolated large partial quotient by rational rotation approximation. Instead

of using Schoissengeier’s results, we use the simple application of rational rotation

approximation. We give much more accurate estimates for discrepancies of irrational

rotations. We show that the first part of the graph of discrepancies of irrational

rotations with a single isolated large partial quotient is linearly decreasing, provided

we observe the discrepancies on a linear scale with suitable step. We also prove that

large hills, caused by single isolated large partial quotients, will appear infinitely

often.

Next, we discuss the estimates of discrepancies of irrational rotations with several

large partial quotients, caused by several, but not single, larger partial quotients.

[22], [23] considered some irrational numbers which have a single isolated large

partial quotient, for example, log10 7 (or 1 − log10 7) and π − 3. Let us see their

continued fraction expansions in more detail.

log10 7 = [0; 1, 5, 2, 5, 6, 1, 4813, 1, 1, 2, 2, 2, 1, 1, 1, 6, 5, 1, 83, 7, 2, 1, 1, 1, 8, 5,

21, 1, 1, 3, 2, 1, 4, 2, 3, 14, 2, 6, 1, 1, 5, 2, 1, 2, 4, 26, 2, 6, 1, 5, 1, 1,

2, 2, 3, 6, 2, 2, 103, 2, 2, 1084, 1, 1, 1, 1, 12, 1, 8, 5, 1, 3, 4, . . .],
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π − 3 = [0; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1,

15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, . . .].

log10 7 has large partial quotients not only a7 = 4813 but also comparatively large

partial quotients such as a19 = 83, a59 = 103 and a62 = 1084. Similarly, π − 3 has

several large partial quotients, such as a4 = 292, a21 = 84 and a33 = 99. Further-

more, we have another example, log10 37− 1, whose continued fraction expansion is

given as follows:

log10 37− 1 = [0; 1, 1, 3, 6, 25, 1, 3, 1, 2, 1, 248, 140, 1, 85, 1, 4, 2, 4, 1, 8, 4, 1, . . .].

Note that log10 37 − 1 has two continued large partial quotients such as a11 =

248, a12 = 140 and one large partial quotient a14 = 85. We want to study effects on

behaviors of discrepancies, caused by two such continued large partial quotients and

one large partial quotient. [22], [23] and [24] contain mainly the cases where α has

one single isolated large partial quotient. It would seem to be difficult to discuss the

cases where α has several large partial quotients by using Schoissengeier’s results

(cf. [22], [23]). We consider the cases where α has several large partial quotients

and give some estimates for discrepancies, by using rational rotation approximation

and the Ostrowski expansion. In such cases, the way of overlapping of hills depends

on the orders of several large partial quotients, even or odd. We give some graphs

of compound quadratic curves of behavior of discrepancies and we explain effects of

such several large partial quotients mathematically, by using our estimates.

The following sections of this dissertation are available as articles with minor

modifications.

Section 3:

Shimaru, N. and Takashima, K.: Continued fractions and irrational rotations, Pe-

riodica Math. Hungr., 75 (2), (2017), 155 – 158.

Section 4:

Mori, Y., Shimaru, N. and Takashima, K.: On the distribution of partial sums of
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irrational rotations, Periodica Math.Hungr., in print.

Section 5:

Doi, K., Shimaru, N. and Takashima, K., On upper estimates for discrepancies of

irrational rotations: via Rational Rotation Approximations, Acta Math Hungr., 152

(1), (2017), 109 – 113.

Shimaru, N. and Takashima, K.: Continued fractions and irrational rotations, Pe-

riodica Math. Hungr., 75 (2), (2017), 155 – 158.

Shimaru, N. and Takashima, K.: On discrepancies of irrational rotations with sev-

eral large partial quotients, Acta Math. Hungr., 156 (2), (2018), 449 – 458.
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2. Preliminaries

In this section, we prepare well-known notions, notations and results for uniformly

distributed sequences and continued fractions, as quickly references.

2.1. Uniformly distributed sequences

We recall definition of uniformly distributed sequences, Weyl’s criterion (Weyl’s

lemma) and basic properties of discrepancies (cf. [14]).

For a real number x, the fractional part {x} of x is defined by {x} = x − [x],

where [x] denotes the integral part of x.

Definition 2.1. A given sequence (xn), n = 1, 2, 3, . . . , of real numbers is said to

be uniformly distributed mod 1 (abbreviated u.d. mod 1) if for the every pair a, b

of real numbers with 0 ≤ a < b ≤ 1, we have

lim
N→∞

1

N

N∑
n=1

I[a,b)({xn}) = b− a, (2.1)

where I[a,b) is the indicator function of the interval [a, b).

Theorem 2.2 (cf. [27], Weyl’s criterion). A sequence (xn), n = 1, 2, . . . is u.d.

mod 1 if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0

holds for all integer h ̸= 0.

Especially, for any irrational number α, Weyl applied this theorem to {nα}, n =

1, 2, . . .. Then, Weyl’s criterion implies the next lemma.

Lemma 2.3 (cf. [27], Weyl’s lemma). Let α be an irrational number. Then,

irrational rotation {nα} is u.d. mod 1.

For a sequence (xn), the discrepancies have usually two types of definition.
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Definition 2.4 (cf. [14]).

DN({xn}) = sup
0≤a<b<1

∣∣∣∣∣ 1N
N∑

n=1

I[a,b)({xn})− (b− a)

∣∣∣∣∣ ,
D∗

N({xn}) = sup
0≤a<1

∣∣∣∣∣ 1N
N∑
i=1

I[0,a)({xn})− a

∣∣∣∣∣ .
The essential point of concept of discrepancy is that the notion of uniformly

distributed sequences can be covered by it; i.e. the convergence in (2.1) is uniform

with respect to all intervals [a, b) ⊆ [0, 1).

lim
N→∞

DN({nα}) = lim
N→∞

D∗
N({nα}) = 0. (2.2)

In Section 5, we discuss mainly D∗
N({nα}) and ND∗

N({nα}).

2.2. Continued fractions

For an irrational number α (0 < α < 1), an expression of a continued fraction is

denoted by as follows:

α =
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 + · · ·

,

or simply,

α = [ 0 ; a1, a2, a3, a4, a5, . . . ].

We denote the nth partial quotient by an and the nth convergent of α by rn =

pn/qn = [ 0 ; a1, a2, . . . , an ].

Now, we define continued fraction transformation τ : [0, 1) −→ [0, 1).

Definition 2.5 (cf. [8]).

τ(x) =


1
x
−
[
1
x

]
if x ̸= 0,

0 if x = 0,

where [x] is integral part of x.
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We have the following relations by using inductively the continued fraction trans-

formation:

τn−1(α) = [0 ; an, an+1, an+2, . . .] ,
1

τn−1(α)
= an + τn(α),

where τ 0 is identity map and τn is composed n times with itself. We imply that

continued fraction transformation τ is algorithm to derive the partial quotient an.

The numerator pn and the denominator qn of the nth convergent have the following

recursion formulas:

Theorem 2.6 (cf. [8]). Let n be a natural number.pn+1 = an+1pn + pn−1 , p0 = 0 , p1 = 1,

qn+1 = an+1qn + qn−1 , q0 = 1 , q1 = a1.
(2.3)

Proof. Let us assume that pk/qk = [ 0 ; a1, a2, . . . , ak ] is true for ∀k ≤ n.

[ 0 ; a1, a2, . . . , ak+1 ] = [ 0 ; a1, a2, . . . , ak +
1

ak+1
].

Now, put ak + 1/ak+1 = a′k,

[ 0 ; a1, a2, . . . , ak+1 ] = [ 0 ; a1, a2, . . . , a′k ]

=
a′kpk−1 + pk−2

a′kqk−1 + qk−2

=
(ak +

1
ak+1

)pk−1 + pk−2

(ak +
1

ak+1
)qk−1 + qk−2

=
pk+1

qk+1

.

�

Now, note that by above properties, we also have

α = [ 0 ; a1 , a2 , . . . , an + τn(α) ]

=
(an + τn(α))pn−1 + pn−2

(an + τn(α))qn−1 + qn−2

=
pn + τn(α)pn−1

qn + τn(α)qn−1

. (2.4)

From (2.3), we obtain the next well–known relation.
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Theorem 2.7 (cf. [8]). For any positive integer n,

pnqn−1 − qnpn−1 = (−1)n−1, (2.5)

and
pn
qn

− pn−1

qn−1

=
(−1)n−1

qnqn−1

.

Proof. It is trivial from (2.3). �

We obtain immediately the following formulas from (2.3) and (2.5)

Corollary 2.8 (cf. [13]). For any positive integer n,

pnqn−2 − qnpn−2 = (−1)n−2an, (2.6)

and
pn
qn

− pn−2

qn−2

=
(−1)n−2an
qnqn−2

.

Remark 2.1. From (2.5), since right–hand side is positive for odd n, it is easily

seen that every odd–order convergent is greater than any even–order convergent.

From (2.6), we can easily see that even–order convergents are increasing and odd–

order convergents are decreasing i.e.

r2 < r4 < · · · < r2n < · · · < α < · · · < r2n+1 < · · · < r3 < r1.

Furthermore, on the basis of (2.5) and (2.6), we can easily derive the estimate

between α and pn/qn.

Theorem 2.9 (cf. [8]). For any positive integer n, let α be an irrational number.

We have the inequality; ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

.

Corollary 2.10 (cf. [8]). For any positive integer n,

α− pn
qn

=
(−1)nτn(α)

qn(qn + τn(α)qn−1)
.
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Proof. Let recall that 1/τn(α) = an+1 + τn+1(α) and (2.4),

α− pn
qn

=
(−1)nτn(α)

qn(qn + τn(α)qn−1)

=
(−1)n

qn(qn(an+1 + τn+1(α)) + qn−1)

=
(−1)n

qn(qn+1 + qnτn+1(α))
.

�

By continued fraction transformation, it is easily seen that 0 < τn(α) < 1. Hence,

we have the proposition.

Proposition 2.11 (cf. [8]). For any positive integer n,

1

qn(qn+1 + qn)
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

.

Now, we introduce the expansion for natural number N that is an important idea

for investigation of irrational rotations (cf. [17], [18]). Let the natural number m be

chosen by the inequality, qm ≤ N < qm+1, and N has the expansion as follows:

N =
m∑
j=0

bjqj , q0 = 1, (2.7)

where each coefficient bj satisfies

0 ≤ b0 < a1, 0 ≤ bj ≤ aj+1, j ≥ 1, and bj−1 = 0 if bj = aj+1 .

This expansion is called as Ostrowski expansion with respect to continued fraction

expansion of α. In all that follows, m and j are the number introduced in Ostrowski

expansion.

Mori and Takashima [15] used the idea of rational rotation approximation to

investigate behaviors of irrational rotations. Furthermore, we extend and clarify

the method of rational rotation approximations for irrational rotations. We, now,

summarize rational rotation approximation method as follows:
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Lemma 2.12 (cf. [3]). Let α be an irrational number. For each i = 1, 2, · · · , qn,
let ki denote an integer satisfying ipn ≡ ki (mod qn), 0 ≤ ki < qn. We have

ki
qn

< {iα} < {(i+ qn)α} < {(i+ 2qn)α} < · · · < ki + 1

qn
,

in case n is even, and

ki
qn

< · · · < {(i+ 2qn)α} < {(i+ qn)α} < {iα} <
ki + 1

qn
,

in case n is odd.

In this lemma, we want to emphasize that the distance between neighboring two

points is equal to ∆n, where δn = |α− pn/qn| and ∆n = {qnα} = qnδn.

j : even

ki
qj

ki + 1

qj

{iα}
{(i+ qj)α}

{(i+ 2qj)α}
{(i+ 3qj)α}

{(i+ (aj+1 − 1)qj)α}

j : odd

ki
qj

ki + 1

qj

{iα}
{(i+ qj)α}

{(i+ 2qj)α}
{(i+ 3qj)α}

{(i+ (aj+1 − 1)qj)α}



12

3. Continued fractions and

irrational rotations

We discuss the behaviors of irrational rotations {Nα} by using method that is

approximated by the nth convergent of α. We provide the first formula in Theo-

rem3.3 for pnqk − qnpk (k < n) in terms of polynomials Qi defined in terms of aj’s.

Furthermore, We use the formula for pnqk − qnpk and Ostrowski expansion to derive

the exact formula for {Nα} (Theorem3.5).

We define polynomials Qi based on partial quotients aj’s for i < n as follows:

Definition 3.1 (cf. [25]).

Qi(an, · · · , an−i+1) =



0 if i = −1,

1 if i = 0,

an if i = 1,

anQi−1(an−1, · · · , an−i+1)

+Qi−2(an−2, · · · , an−i+1) if 2 ≤ i ≤ n− 1.

From Definition 3.1, it is easily seen thatQn(a1, · · · , an) = qn andQn−1(a2, · · · , an) =
pn, that is, nth convergent is expressed by

pn
qn

=
Qn−1(a2, · · · , an)
Qn(a1, · · · , an)

.

The polynomials Qn has the following symmetrical property in its arguments:

Proposition 3.2 (cf. [8]). For any n ≥ 1,

Qn(a1, · · · , an) = Qn(an, · · · , a1).

Proof. The proof follows immediately from induction. �

By using the polynomials Qi, we have the following generalized formulas for pnqk−
qnpk:
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Theorem 3.3 (cf. [25]). For any positive integer k satisfied 1 ≤ k ≤ n,

pnqk − qnpk = (−1)kQn−k−1(an−1, an−2, · · · , ak+2),

and

qkβ = qk
pn
qn

≡ (−1)kQn−k−1(an, · · · , ak+2)

qn
(mod 1).

Proof. Let suppose that pnqℓ − qnpℓ = (−1)ℓQn−ℓ−1(an−1, an−2, · · · , aℓ+2) is true

for ∀ℓ ≤ n.

pnqk − qnpk = (anpn−1 + pn−2)qk − (anqn−1 + qn−2)pk

= an(pn−1qk − qn−1pk) + (pn−2qk − qn−2pk)

= an(−1)kQn−k−2(an−1, an−2, · · · , ak+2)

+ (−1)kQn−k−3(an−2, an−3, · · · , ak+2)

= (−1)kQn−k−1(an, an−1, · · · , ak+2) .

�

We combine Theorem 3.3 with Ostrowski expansion. Let β be the nth convergent

pn/qn of α. Then, we obtain the following theorem on behaviors of rational rotations.

Theorem 3.4 (cf. [25]). For ∀n > m,

Nβ ≡
m∑
j=0

bj
(−1)jQn−j−1(an, · · · , aj+2)

qn
(mod 1).

Now, we consider the behaviors of irrational rotation {Nα}. By using the trivial

relation, α = (α−β)+β, we obtain the formula on behaviors of irrational rotations.

Theorem 3.5 (cf. [25]). For ∀n > m,

Nα ≡ N(α− β) +
m∑
j=0

bj
(−1)jQn−j−1(an, · · · , aj+2)

qn
(mod 1).

In this theorem we choose N first, which determines m and the Ostrowski expan-

sion. We want to emphasize the fact that this sum of Theorem 3.5 can be definitely

determined by using inductive relation of Qi’s. We choose an integer n sufficiently

large than integer m. Then each point {Nβ} is one of a fraction with the form
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ℓ/qn (0 ≤ ℓ < qn), where ℓ can be determined by Qi’s. Note that we can select n

large enough, so that we can make the error term N(α − β) as small as we want.

Thus, we can see exactly where {Nα} is in the interval [0, 1) by using this Theorem

3.5.

Now, we apply Ostrowski expansion directly to the relation

qjα = qjα− pj (mod 1)

yields for n > m another formula for {Nα}:

Theorem 3.6 (cf. [18], [14]). For ∀n > m,

Nα ≡
m∑
j=0

bj(qjα− pj) (mod 1).

The Theorem 3.6 is similar to the Theorem 3.5, but it is not simple to determined

values in this summation. Thus, it would not be easy to determine exactly where

{Nα} exists in the interval [0, 1). Theorem 3.5 seems more useful than Theorem

3.6.
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4. On the distribution of partial sums

4.1. Fluctuations from 1
2,
∑N

i=1

(
{iα} − 1

2

)
We consider the sum

∑N
i=1

(
{iα} − 1

2

)
, and give its exact formula. Especially Os-

trowski gave the estimate by direct calculation. We use decomposition by Ostrowski

expansion and cancellation technique, and we obtain the following exact formula:

Theorem 4.1 (cf. [16]). Let α be an irrational number, 0 < α < 1, and m be the

number determined by Ostrowski expansion, for any natural number N .

N∑
i=1

(
{iα} − 1

2

)
=

∑
j:odd,1≤j<m

(
bjqjsj − bjδjq

∗
j −

qj
2
∆jbj(bj − 1) +

bj
2

)

+
∑

j:even,1≤j<m

(
bjqjsj + bjδjq

∗
j +

qj
2
∆jbj(bj − 1)− bj

2

)

+(−1)m
(
bmδmq

∗
m +

qm
2
∆mbm(bm − 1)− bm

2
+

b0(b0 + 1)

2
α− b0

2

)
where q∗j = (qj(qj + 1))/2.

Proof. We now decompose the sum
∑N

i=1

(
{iα} − 1

2

)
by Ostrowski expansion as

follows:

N∑
i=1

(
{iα} − 1

2

)
=

m∑
j=0

nj+bjqj∑
i=nj+1

(
{iα} − 1

2

)

=
m∑
j=0

bjqj∑
i=1

(
{sj + iα} − 1

2

)

=
m∑
j=0

bjqj∑
i=1

(
sj + {iα} − 1

2

)

=
m∑
j=0

bjqjsj +

bjqj∑
i=1

(
{iα} − 1

2

) ,

where nj =
∑m

k=j+1 bkqk, sj =
∑m

k=j+1 bkqk(α − rk) and sm = 0. Let us recall that

α − rj > 0, if j is even, and that α − rj < 0, if j is odd (cf. [25] ). We can easily
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show that sj is enough smaller than ∆j. We have to divide our arguments into two

cases.

Case I: We first assume that j is even.

It is easily seen that for each point k/qj there is one point k
′/qj which takes symmet-

ric position to k/qj with respect to the mid-point 1/2. Let us consider the mid-point

of a sub-interval, in which a point {iα} is included, and consider also the difference

between {iα} and the mid-point of the sub-interval. Under these considerations, it

is easily seen that the sum is calculated as follows:

bjqj∑
i=1

(
{iα} − 1

2

)
=

bj−1∑
ℓ=0

{
qj∑
i=1

iδj + qj

(
ℓ∆j −

1

2qj

)}
.

Let q∗j = (qj(qj + 1))/2. It is also clear that

qj∑
i=1

iδj = δj

qj∑
i=1

i = δj
qj(qj + 1)

2
= δjq

∗
j .

Thus, we have the following estimate:

bjqj∑
i=1

(
{iα} − 1

2

)
= bjδjq

∗
j +

qj
2
∆jbj(bj − 1)− bj

2
.

The right-hand side of this equation seems to be a quadratic function of bj, 0 ≤ bj ≤
aj+1, and its values are non-positive.

Case II. Secondly, we assume that j is odd.

In this case, we have to pay attention on the fact that α− rj < 0. Let δj = |α− rj|
again. In this case we only have to modify the above arguments, by considering

reverse sign.

bjqj∑
i=1

(
{iα} − 1

2

)
= −bjδjq

∗
j −

qj
2
∆jbj(bj − 1) +

bj
2
.

The right-hand side of the above equation seems also a quadratic function of bj, and

this time, its values are non-negative.

Summing up the above arguments, we have our result. �

We provide Corollary 4.2 to give a mathematical explanation for the graphs shown

in Fig.1 and Fig.2.
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Corollary 4.2 (cf. [16]). For 0 ≤ ν < aj+1, we have

νqj∑
i=1

(
{iα} − 1

2

)
= (−1)j

aj+1

2
(1 + ε1)xν (xν − 1) + ε2,

where |ε1|, |ε2| <
1

qj
, and xν = ν/aj+1, 0 < xν < 1.

From Corollary 4.2, we can easily see that the sums
∑νqj

i=1

(
{iα} − 1

2

)
behave a

quadratic curve for xν

4.2. Fluctuations from 1
12,
∑N

i=1

{(
{iα} − 1

2

)2 − 1
12

}

We consider the distribution of
∑N

i=1

{(
{iα} − 1

2

)2 − 1
12

}
, and we give its exact

formula. Behnke [2] studied this problem, with giving some asymptotic orders for

the behaviors of the sum by using Fourier analysis.

The cancellations technique plays an important role in calculation of
∑N

i=1

(
{iα} − 1

2

)
in the previous subsection, because

(
{iα} − 1

2

)
is linear in i. The cancellation tech-

nique, however, does not work for this problem, because
(
{iα} − 1

2

)2
is not linear.

For this reason, we have to calculate the sum
∑N

i=1

{(
{iα} − 1

2

)2 − 1
12

}
directly.

Because of our exact result, we can show the fact that
∑N

i=1

{(
{iα} − 1

2

)2 − 1
12

}
behaves like a cubic function, when we observe it with an adequate steps. We first

state our main results.
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Theorem 4.3 (cf. [16]). Let α be an irrational number, 0 < α < 1, and m be the

number determined by Ostrowski expansion, for any natural number N .

N∑
i=1

{(
{iα} − 1

2

)2

− 1

12

}
=

m∑
j:even,≤m

{
1

3
b3j∆

2
jqj −

1

2
b2j(∆j −∆2

j − 2sj∆jqj)

+
1

6
bj

( 1

qj
+ qjδ

2
j + 6sjqjδj − 6sj + 6s2jqj

)
+ 2bjδj

qj∑
i=1

i
ki
qj

− 1

2
bjq

2
j δj

}

+
m∑

j:odd,≤m

{
1

3
b3j∆

2
jqj −

1

2
b2j(∆j −∆2

j + 2sj∆jqj) +
1

6
bj

( 1

qj
+ qjδ

2
j − 6sjqjδj + 6sj + 6s2jqj

)

− 2bjδj

qj∑
i=1

i
ki
qj

+
1

2
bjq

2
j δj + bjqjδj

}
,

where δj =

∣∣∣∣α− pj
qj

∣∣∣∣, sj =
m∑

k=j+1

bkqk

(
α− pk

qk

)
, sm = 0 , ∆j = qjδj, ipj ≡ ki

(mod qj).

Proof. We first decompose the sum
∑bjqj

i=1

{(
{iα} − 1

2

)2 − 1
12

}
by Ostrowski ex-

pansion. We use the same notations nj, sj as those defined in previous subsection.

N∑
i=1

{(
{iα} − 1

2

)2

− 1

12

}
=

m∑
j=0

nj+bjqj∑
i=nj+1

{(
{iα} − 1

2

)2

− 1

12

}

=
m∑
j=0

bjqj∑
i=1

{(
{sj + iα} − 1

2

)2

− 1

12

}

=
m∑
j=0

bjqj∑
i=1

{(
sj + {iα} − 1

2

)2

− 1

12

}
.

Case I. We first assume that j is even.

Let us recall that {(i+ ℓqj)α} = {iα} + ℓ∆j and {iα} = ki/qj + iδj (i =

1, . . . , qj , ℓ = 0, . . . , bj − 1).
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bjqj∑
i=1

{(
sj + {iα} − 1

2

)2

− 1

12

}

=

bj−1∑
ℓ=0

qj∑
i=1

{(
sj + ℓ∆j + iδj +

ki
qj

− 1

2

)2

− 1

12

}

=

bj−1∑
ℓ=0

qj∑
i=1

({(
sj + ℓ∆j + iδj +

ki
qj

− 1

2

)2

−
(
ℓ∆j + iδj +

ki
qj

− 1

2

)2
}

+

{(
ℓ∆j + iδj +

ki
qj

− 1

2

)2

−
(
iδj +

ki
qj

− 1

2

)2
}

+

{(
iδj +

ki
qj

− 1

2

)2

−
(
ki
qj

− 1

2

)2
}

+

{(
ki
qj

− 1

2

)2

− 1

12

})
.

We now calculate each terms in this double summation, having the form of

{(A+ ε)2 − A2}. We obtain the following the equations:

(i)

bj−1∑
ℓ=0

qj∑
i=1

{(
sj + ℓ∆j + iδj +

ki
qj

− 1

2

)2

−
(
ℓ∆j + iδj +

ki
qj

− 1

2

)2
}

= sjbj(bj∆jqj −∆jqj + q2j δj + qjδj − 1 + sjqj) ,

(ii)

bj−1∑
ℓ=0

qj∑
i=1

{(
ℓ∆j + iδj +

ki
qj

− 1

2

)2

−
(
iδj +

kj
qj

− 1

2

)2
}

=
1

6
bj(bj − 1)(2bj − 1)∆2

jqj +
1

2
bj(bj − 1)∆jq

2
j δj

+
1

2
bj(bj − 1)∆jqjδj −

1

2
bj(bj − 1)∆j ,
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(iii)

bj−1∑
ℓ=0

qj∑
i=1

{(
iδj +

ki
qj

− 1

2

)2

−
(
ki
qj

− 1

2

)2
}

=
1

3
bjq

3
j δ

2
j +

1

2
bjq

2
j δ

2
j +

1

6
bjqjδ

2
j −

1

2
bjq

2
j δj −

1

2
bjqjδj + 2bjδj

qj∑
i=1

i
ki
qj

,

(iv)

bj−1∑
ℓ=0

qj∑
i=1

{(
ki
qj

− 1

2

)2

− 1

12

}
=

bj−1∑
ℓ=0

qj∑
i=1

{(
ki
qj

)2

− ki
qj

+
1

6

}

=
1

6qj
bj .

Summing up the above calculations, we obtain the following result:

bjqj∑
i=1

{(
sj + {iα} − 1

2

)2

− 1

12

}
=

1

3
b3j∆

2
jqj −

1

2
b2j
(
∆j −∆2

j − 2sj∆jqj
)

+
1

6
bj

(
1

qj
+ qjδ

2
j + 6sjqjδj − 6sj + 6s2jqj

)
+ 2bjδj

qj∑
i=1

i
ki
qj

− 1

2
bjq

2
j δj.

Case II. We next assume that j is odd.

In this case, note that {iα} − ki/pj = −iδj and {(i+ ℓqj)α} = {iα} − ℓ∆j (i =

1, . . . , qj , ℓ = 0, . . . , bj −1). Now we obtain the following sum by similar arguments

which we use calculations for the case even j.

bjqj∑
i=1

{(
sj + {iα} − 1

2

)2

− 1

12

}
=

bj−1∑
ℓ=0

qj∑
i=1

{(
sj − ℓ∆j − iδj +

ki
qj

− 1

2

)2

− 1

12

}

We similarly obtain the next estimate for odd j for even j:
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bjqj∑
i=1

{(
sj + {iα} − 1

2

)2

− 1

12

}
=

1

3
b3j∆

2
jqj −

1

2
b2j
(
∆j −∆2

j + 2sj∆jqj
)

+
1

6
bj

(
1

qj
+ qjδ

2
j − 6sjqjδj + 6sj + 6s2jqj

)
− 2bjδj

qj∑
i=1

i
ki
qj

+
1

2
bjq

2
j δj + bjqjδj.

Summing up the above calculations, we obtain the following formula:

N∑
i=1

{(
{iα} − 1

2

)2

− 1

12

}
=

m∑
j:even,0≤j≤m

{
1

3
b3j∆

2
jqj −

1

2
b2j(∆j −∆2

j − 2sj∆jqj)

+
1

6
bj

( 1

qj
+ qjδ

2
j + 6sjqjδj − 6sj + 6s2jqj

)
+ 2bjδj

qj∑
i=1

i
kj
qj

− 1

2
bjq

2
j δj

}

+
m∑

j:odd,0≤j≤m

{
1

3
b3j∆

2
jqj −

1

2
b2j(∆j −∆2

j + 2sj∆jqj)

+
1

6
bj

( 1

qj
+ qjδ

2
j − 6sjqjδj + 6sj + 6s2jqj

)
− 2bjδj

qj∑
i=1

i
kj
qj

+
1

2
bjq

2
j δj + bjqjδj

}
.

�

Next let us consider the sum
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
for specific value n, n =

νqj, for some j (≤ m), then we obtain simpler formulas:

Corollary 4.4 (cf. [16]). For n = νqj, let xν = ν
aj+1

, for 0 ≤ ν ≤ aj+1.

n∑
i=1

{(
{iα} − 1

2

)2

− 1

12

}
=

1

3
a3j+1∆

2
jqj

{
x3
ν −

3

2

(
1

aj+1∆jqj
− 1

aj+1qj

)
x2
ν

+
1

2

(
1

a2j+1∆
2
jq

2
j

+
1

a2j+1q
2
j

)
xν

}
+ θ,

where,

θ =


2νδj

∑qj
i=1 i

ki
qj

− 1

2
νq2j δj, if j is even,

−2νδj
∑qj

i=1 i
ki
qj

+
1

2
νq2j δj + νqjδj if j is odd.
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When the continued fraction expansion of α has an isolated large partial quotient

aj+1, especially irrational number α can be closely approximated by jth convergent

rj. Hence we can easily see that 1
aj+1∆jqj

almost equals 1 and 1
aj+1qj

is very small.

Then the right-hand side of this equation seems to be a cubic function of ν, 0 ≤
ν ≤ aj+1. Thus we can give an explanation for the unusual behaviors of the sum∑νqj

i=1

{(
{iα} − 1

2

)2 − 1
12

}
, which are shown in graphs, Fig.3 and Fig.4.

Corollary 4.5 (cf. [16]). For 0 ≤ ν < aj+1.

νqj∑
i=1

{(
{iα} − 1

2

)2

− 1

12

}
=

aj+1

3qj
(1 + ε1)xν

(
xν −

1

2

)
(xν − 1) + θ + ε2 ,

where xν = ν/aj+1 , 0 ≤ xν < 1 , |ε1| <
1

qj
and |ε2| <

7

3qj
.

4.3. Some examples

First, let us recall the following continued fraction expansions:

π − 3 = [0; 7, 15, 1, 292, 1, 1, 1, 2, . . .],

and

log10 7 = [0; 1, 5, 2, 5, 6, 1, 4813, 1, 1, . . .].

We discuss the behaviors of irrational rotations based on these irrational numbers.

Our arguments are, however, still valid with respect to irrational rotations based on

similar irrational numbers with large partial quotients.

4.3.1. The behaviors of
∑n

i=1

(
{iα} − 1

2

)
We discuss with the effects on the sums

∑n
i=1

(
{iα} − 1

2

)
, caused by large partial

quotients, that is, 4813 for log10 7, and 292 for π − 3. We consider the partial sums

for n = νqj, for 0 ≤ ν < aj+1. By Corollary 4.2, the partial sum
∑νqj

i=1

(
{iα} − 1

2

)
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can be approximated by

(−1)j
aj+1

2

ν

aj+1

(
ν

aj+1

− 1

)
= (−1)j

aj+1

2
xν(xν − 1),

where xν = ν/aj+1, 0 < xν < 1, since the error terms ε1 and ε2 are negligible.

For example, in the case of α = π − 3, the maximum value of the curve of the

values of the sum is almost equal to a4/8. Similarly, in the case of α = log10 7, the

minimum value of the curve is almost equal to −a7/8 (cf. Fig.1 and Fig.2).

Fig.1.
∑N

i=1

(
{iα} − 1

2

)
, α = π − 3, n = 587× 113

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 q3

π − 3

4.3.2. The behaviors of
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}

By Corollary 4.5, if α = π−3, or log10 7, the error term are also negligible, and the

partial sum
∑νqj

i=1

{(
{iα} − 1

2

)2 − 1
12

}
can be approximated by the following cubic

function:
aj+1

3qj
xν

(
xν −

1

2

)
(xν − 1) ,

where xν = ν/aj+1, 0 ≤ xν < 1.
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Fig.2.
∑N

i=1

(
{iα} − 1

2

)
, α = log10 7, n = 9627× = 510
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For α = π − 3, the first maximal value of the curve is almost equal to
√
3a4

108q3
, and

the first minimal value of the curve is almost equal to −
√
3a4

108q3
. (cf. Fig. 3)

For α = log10 7, the first maximal value of the curve is almost equal to
√
3a7

108q6
, and

the first minimal value of the curve is almost equal to −
√
3a7

108q6
. (cf. Fig. 4)

By the way, in the discrepancy graph of irrational rotations, Setokuchi and Takashima

[23], and Setokuchi [22] investigated repetitions of “hills” and “valleys”, when α has

a single isolated large partial quotient. For the partial sum
∑n

i=1

(
{iα} − 1

2

)
, as

we showed in subsection 4.1, we can also observe a similar “periodic” behavior for

α = π − 3 and for log10 7, see Fig.1 and Fig.2.

As for the behavior of the partial sum
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
, in the case of

π − 3 we observe very different phenomena, see Fig.4. Note that in this case we do

not deal with simple repetitions. Schoissengeier proved the following approximation:

Theorem A ([21] Theorem 3, pp.136).

N∑
i=1

B2({iα}) =
1

3

∞∑
t=0

B3(
bt

at+1

)
at+1

qt
+O(1),

where B2(x) and B3(x) are Bernoulli polynomials.
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Note that the sum
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
itself is O(1) and thus Theorem A

does not explain Fig.5 and Fig.6: to this purpose we need to show that the error

term O(1) on the right hand side is small compared with the sum, as shown by

Corollaries 4.4 as 4.5 above.

Fig.3.
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
, α = π − 3, n = 584× 113,
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Fig.4.
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i=1

{(
{iα} − 1

2

)2 − 1
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}
, α = log10 7, n = 9627× 510,
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Fig.5.
∑n

i=1

{(
{iα} − 1

2

)2 − 1
12

}
α = π − 3, n = 2920× 113,
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Fig.6.
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i=1
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2
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}
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5. The estimate of discrepancy

5.1. Another proof of Weyl’s lemma

We give an another proof of Weyl’s lemma by applying rational rotation approx-

imation, Ostrowski expansion and basic properties of discrepancies. We decompose

the sum in the definition of ND∗
N({iα}) by using Ostrowski expansion as follow:

N∑
i=1

I[0,x)({iα})−Nx =
m∑
j=0

nj+bjqj∑
i=nj+1

I[0,x)({iα})− bjqjx


=

m∑
j=0

bjqj∑
i=1

I[0,x)(sj + {iα})− bjqjx

 .

Here, we consider the estimate for
∑m

j=0

(∑bjqj
i=1 I[0,x)(sj + {iα})− bjqjx

)
. It is

easily seen that each term in the first summation of the right-hand side is almost

equal to a corresponding term in the definition of bjqjD
∗
bjqj

, except being shifted just

by sj.

From the fact that each sub-interval, (k/qj, (k+1)/qj), contains just bj points of

{iα}, i = 1, 2, . . . , bjqj, bj < aj+1. We easily obtain the following estimate:∣∣∣∣∣∣
bjqj∑
i=1

I[0,x)(sj + {iα})− bjqjx

∣∣∣∣∣∣ ≤ 2aj+1.

Similarly we have ∣∣∣∣∣
bmqm∑
i=1

I[0,x)({iα})− bmqmx

∣∣∣∣∣ ≤ 2bm.

Summing up these arguments, we have an estimate for ND∗
N from above:

ND∗
N ≤ 2

(
m−1∑
j=0

aj+1 + bm

)
.
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Although Khinchine [13] showed that qn ≥ 2
k−1
2 , we provide A (= max1≤j≤m aj)

to remove the possibility that aj is large. Then, the following estimates are easily

derived;

N ≥ A2
m−1

2 (m > 1),
m−1∑
j=0

aj+1 ≤ Am,
bm
N

<
1

qm
,

and

D∗
N({iα}) ≤ m2

−m+3
2 +

2

qm
.

Thus, we easily obtain limN→∞ D∗
N({iα}) = 0, and this prove Weyl’s lemma.
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5.2. The estimate of discrepancy:

single isolated large partial quotient case

We discuss the behaviors of discrepancies of irrational rotations with single iso-

lated large partial quotient. It is well-known that π − 3 has a single isolated large

partial quotient aη = a4 = 292. For example, Fig.7 shows the first slope and the

first “hill” of a graph of discrepancies of irrational rotation based α = π − 3.

5.2.1. Estimate for the first slope

We, first, consider n = ν × qη−1, ν = 1, 2, . . . , aη − 1, and thus, i < qη. Behaviors

of discrepancies for these i’s are shown as the first long slope in graphs, cf. Fig.7

and Fig.8. For such n’s, {iα} is very closely approximated by
{
i
pj
qj

}
.

We obtain the following estimate for the first part of graphs of discrepancies. In

the following, we assume that the order η of the isolated large partial quotient is

odd and η ≥ 3. In case where η is even, we can easily change our arguments in the

reverse direction. Then, we have:

Theorem 5.1. Assume that η ≥ 3. For n = νqη−1(0 < ν < aη), D
∗
n({iα}) is

linearly decreasing, i.e.,

D∗
n({iα}) =

1

qη−1

(
1−∆η−1 −

(ν − 1)

L

)
,

where L = qη−1∆η−1 = aη +
qη−2

qη−1
+ τ η(α). We also have

nD∗
n({iα}) = ν

(
1−∆η−1 −

(ν − 1)

L

)
.

where ∆η−1 = qη−1|α− rη−1| and L = aη +
qη−2

qη−1
+ τ η(α).

Let us recall that the point {(i+qη−1)α} returns back into the same interval where

the point {iα} lies, for any i < aη, just greater by ∆η−1, we can estimate D∗
n({iα})

as follows: let n = ν qη−1, first we can divide the supremum into small parts;
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Fig.7. α = π − 3 with step q3 = 113
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Fig.8. α = π − 3 with step q3 = 113
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nD∗
n({iα}) = sup

0≤i<qη−1

sup
ki≤qη−1x<(ki+1)

∣∣∣∣∣
n∑

i=1

I[0,x)({iα})− nx

∣∣∣∣∣ .
Note here that

∣∣∣∑n
i=1 I[0,xki

)({iα})− nxki

∣∣∣ = 0, for any xki = k
qη−1

, ipη−1 ≡ ki

(mod qη−1) and for n = ν × qη−1, because just ν points of {iα} are in each interval

[xki , xki+1). It is also easily proved that the supremum of the value in the right-hand
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side is attained at the largest point iα (mod 1) in the interval [xki , xki+1). Thus, we

have

sup
xki

≤x<xki+1

∣∣∣∣∣
n∑

i=1

I[xki
,x)({iα})− nx

∣∣∣∣∣ = ν − νqη−1(iδη−1 + (ν − 1)∆η−1),

where δη−1 = |α− rη−1|. Thus, we have the following estimate:

nD∗
n({iα}) = ν − νqη−1(δη−1 + (ν − 1)∆η−1) = ν − ν(qη−1δη−1 + (ν − 1)qη−1∆η−1),

for n = νqη−1, ν < aη. We use that ∆η−1 = qη−1δη−1 and qη−1∆η−1 = 1
L
, then we

can obtain the following:

nD∗
n({iα}) = ν

(
1− (∆η−1 +

(ν − 1)

L
)

)
,

and

D∗
n({iα}) =

1

qη−1

(
1− (∆η−1 +

(ν − 1)

L
)

)
,

for n = νqη−1, ν < aη.

In case where η is even, we can derive the result by considering the direction

reversed.

5.2.2. Estimate for the first hill

Setokuchi ([22]) ( see also [24]) shows that the first valley is a wider valley, [qη, qη+1]

in case of aη+1 = 1, and that the first valley is a one-point valley, [qη, qη] in case of

aη+1 ≥ 2.

The basic idea of our calculations in this subsection is that hills between valleys,

one-point valleys or wider valleys, have width qη and that at the starting point of each

hill, the discrepancy up to the point is evaluated by the summation of discrepancies

for hills involved. We can say this as follows; discrepancies can start afresh again at

each end-point of a valley.

To fix our consideration, we assume first that η is odd and that aη+1 = 1. Then,

the first valley is a wider valley and the first hill starts from n = qη+1+1. Recall that

every point {iα} (1 ≤ i ≤ qη+1) is approximated by some j
qη+1

(j = 0, 1, . . . , qη+1−1)
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very highly closely.

Next, we consider the behaviors of discrepancies of irrational rotations for n =

qη+1 + νqη−1 (0 < ν < aη). The orbit {(qη+1 + k)α} (k ≥ 0) is almost equal to the

orbit {kα} (k ≥ 0). The difference is that each point is just shifted by δ′, where

δ′ = (α− rη+1)qη+1 = qη+1α− pη+1 (mod 1). Note that |δ′| < 1
qη+2

. Moreover, since

n∑
i=1

I[0,x)({iα})− nx

is linear, we can divide this into two parts; one is concerned with only points {iα}
(1 ≤ i ≤ qη+1), and the other is concerned with other points {mα} (qη+1 +1 ≤ m ≤
qη+1 + νqη−1). Thus we easily have

qη+1+νqη−1∑
m=1

I[0,x)({iα})− (qη+1 + νqη−1)x

=

(
qη+1∑
i=1

I[0,x)({mα})− qη+1x

)
+

qη+1+νqη−1∑
i=qη+1+1

I[0,x)({iα})− νqη−1x

 .

The first term is exactly related to the discrepancy of points {iα} (1 ≤ i ≤ qη+1),

and the second term is divided into two parts:

qη+1+νqη−1∑
i=qη+1+1

I[0,x)({iα})− νqη−1x

=

qη+1+νqη−1∑
i=qη+1+1

I[0,x)({iα})− νqη−1(x+ δ′)

+ δ′νqη−1.

=

(
νqη−1∑
i=1

I[0,x)(δ
′ + {iα})− νqη−1(x+ δ′)

)
+ δ′νqη−1.

Note that points {(qη+1 + k)α} (k ≥ 0) are just shifted by δ′ from points {kα}
(k ≥ 0), and we can see that the first term of the right-hand side in the above last

equation is the same as the summation discussed in the previous subsection.

Note that qη+1D
∗
qη+1

({iα}) < 1, and that η − 1 and η + 1 are even or odd simul-

taneously.
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In case aη+1 ≥ 2, then the point n = qη is a one-point valley, and the first hill

represents the behaviors of nD∗
n({iα}), qη ≤ i < 2qη. In this case, since η is odd, it

is well-known that δ′′ = qη(α − rη) = qηα − pη < 0. Thus, we have to modify the

above arguments a little, with changing δ′ by δ′′.

In case of even η, we need only to consider the reverse direction. Thus, we can

easily obtain the following theorem:

Theorem 5.2. Assume that η ≥ 3. We have the following estimate for the first

hill:

nD∗
n({iα}) = ν

(
1−∆η−1 −

(ν − 1)

L

)
+ θ,

for n = qη+1 + νqη−1, if aη+1 = 1, and for n = qη + νqη−1, if aη+1 ≥ 2, and for

0 < ν < qη, where 0 ≤ θ ≤ 2.

Remark 5.1. From this theorem, it is clear that nD∗
n behaves like quadratic

function, as remarked in Setokuchi and Takashima ([24]) and Setokuchi ([22]).

We can easily derive the following results from the above arguments:

Corollary 5.3. Assume that η ≥ 3 and λ > η.

For n = qλ + νqη−1, 0 < ν < aη,

nD∗
n({iα}) = ν

(
1−∆η−1 −

(ν − 1)

L

)
+ θ,

where 0 ≤ θ ≤ 2.

Corollary 5.4. The hills, caused by single isolated large partial quotient, qη, will

appear infinitely often.

In the above, we assume that aη+1 is not large compared with aη. In case of large

aη+1, which we can not call it as the case of single isolated large partial quotient, we

must be very careful in estimations of discrepancies.
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5.3. The estimate of discrepancy:

several large partial quotients case

We consider discrepancies of irrational rotations based on an irrational number α,

and we pick out several specific partial quotients aη1 , aη2 , . . . , aηK from α’s continued

fraction expansion. We investigate the effects of aη1 , aη2 , . . . , aηK on the behaviors

of discrepancies. Then, we have

Theorem 5.5. Let α be an irrational number, 0 < α < 1. For any positive

integer N , m denotes the positive integer defined in Ostrowski expansion.∣∣∣∣∣ND∗
N({iα})−max

{ ∑
ηk:odd

{bηk−1 − bηk−1qηk−1 (sηk−1 + δηk−1 + (bηk−1 − 1)∆ηk−1)} ,

∑
ηk:even

{bηk−1 − bηk−1qηk−1 (sηk−1 + δηk−1 + (bηk−1 − 1)∆ηk−1)}
}∣∣∣∣∣

≤ max{K1, K2}+
1

4
max

{
m∑

j=0,j ̸=η1,··· ,ηK ,j:even

aj,
m∑

j=0,j ̸=η1,··· ,ηK ,j:odd

aj

}
,

where aj = max{4, aj}, K1 denotes the number of even ηk
′s and K2 denotes the

number of odd ηk
′s. Moreover let nj =

∑m
k=j+1 bkqk , sj =

∑m
k=j+1 bkqk(α − rk) ,

j = m− 1, . . . , 0 , and sm = 0.

Remark 5.2. When several specific partial quotients aη1 , aη2 , . . . , aηK are com-

paratively large, the terms in the right–hand side in Theorem 5.5 are much smaller

than the maximum in the left–hand side. Therefore, discrepancies of such irrational

rotations behave according to the maximum in the left–hand side.

Remark 5.3. When we choose more specific partial quotients, the number of

members in the sums in the right–hand side would be smaller. Contrary, when we

choose less specific partial quotients, the number of members in the sums in the

right–hand side would be bigger.
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Proof. We decompose the sum in the definition of nD∗
n({iα}) by using Ostrowski

expansion, as follows:

n∑
i=1

1[0,a)({iα})−Na =
∑
ηk:odd

bηk−1qηk−1∑
i=1

1[0,a)(sηk−1 + {iα})− bηk−1qηk−1(sηk−1 + a)


+
∑

ηk:even

bηk−1qηk−1∑
i=1

1[0,a)(sηk−1 + {iα})− bηk−1qηk−1(sηk−1 + a)


+
∑
ηk:odd

(bηk−1qηk−1sηk−1) +
∑

ηk:even

(bηk−1qηk−1sηk−1)

+
m∑

j=0,j ̸=η1−1,··· ,ηK−1,j:odd

bjqj∑
i=1

1[0,a)({iα})− bjqja


+

m∑
j=0,j ̸=η1−1,··· ,ηK−1,j:even

bjqj∑
i=1

1[0,a)({iα})− bjqja

 .

Using Lemma 2.12 and the well-known inequality p2n/q2n < α < p2n−1/q2n−1, we

have the following estimates for odd ηk (ηk < m):

−1 ≤
bηk−1qηk−1∑

i=1

1[0,a)(sηk−1 + {iα})− bηk−1qηk−1(sηk−1 + a)

≤ bηk−1 − bηk−1qηk−1(sηk−1 + δηk−1 + (bηk−1 − 1)∆ηk−1),

and for even ηk (ηk < m):

− {bηk−1 − bηk−1qηk−1(sηk−1 + δηk−1 + (bηk−1 − 1)∆ηk−1)} ≤
bηk−1qηk−1∑

i=1

1[0,a)(sηk−1 + {iα})− bηk−1qηk−1(sηk−1 + a) ≤ 1.

Let us recall that |sj| < 1
qj+1

, and it is easily shown that |bjqjsj| < 1. Then, we

can obtain∣∣∣∣∣ ∑
ηk:odd

(bηk−1qηk−1sηk−1) +
∑

ηk:even

(bηk−1qηk−1sηk−1)

∣∣∣∣∣ < max{K1, K2},
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where K1 is the number of even ηk
′s and K2 is the number of odd ηk

′s. Set āj =

max{4, aj}, then we have easily

sup
0≤a<1

∣∣∣∣∣
m∑

j=0,j ̸=η1−1,··· ,ηK−1,j:odd

bjqj∑
i=1

1[0,a)({iα})− bjqja


+

m∑
j=0,j ̸=η1−1,··· ,ηK−1,j:even

bjqj∑
i=1

1[0,a)({iα})− bjqja

∣∣∣∣∣
≤ 1

4
max

{
m∑

j=0,j ̸=η1−1,··· ,ηK−1,j:odd

āj,

m∑
j=0,j ̸=η1−1,··· ,ηK−1,j:even

āj

}
.

Summing up the above estimates, we obtain Theorem 5.5. �

When α has more large partial quotients aη1 , aη2 , . . . , aηK′ , the behaviors ofND∗
N({iα})

would become more complicated. Thus, we consider simpler cases when α has only

two larger partial quotients aη1 , aη2 . Let us study behaviors of discrepancies in the

case of even η1 + η2 and in the case of odd η1 + η2, separately. Firstly:

Corollary 5.6. Assume that η1+ η2 is even. For n = ν1qη1−1+ν2qη2−1 (0 ≤ ν1 <

aη1 , 0 ≤ ν2 < aη2),

nD∗
n({iα}) = {ν1 − ν1qη1−1 (sη1−1 + δη1−1 + (ν1 − 1)∆η1−1)}

+ {ν2 − ν2qη2−1 (sη2−1 + δη2−1 + (ν2 − 1)∆η2−1)}+ θ,

where |θ| ≤ 2 +
1

4
max

{∑m
j=0,j ̸=η1,η2,j:even

aj,
∑m

j=0,j ̸=η1,η2,j:odd
aj

}
.

Secondly:

Corollary 5.7. Assume that η1 + η2 is odd. For n = ν1qη1−1 + ν2qη2−1 (0 ≤ ν1 <

aη1 , 0 ≤ ν2 < aη2),

nD∗
n({iα}) = max

{
{ν1 − ν1qη1−1 (sη1−1 + δη1−1 + (ν1 − 1)∆η1−1)} ,

{ν2 − ν2qη2−1 (sη2−1 + δη2−1 + (ν2 − 1)∆η2−1)}
}
+ θ,

where |θ| ≤ 1 +
1

4
max

{∑m
j=0,j ̸=η1,η2,j:even

aj,
∑m

j=0,j ̸=η1,η2,j:odd
aj

}
.
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From Corollary 5.6 and Corollary 5.7, it can be easily seen that the shapes of

graphs of discrepancies of irrational rotations with double large partial quotients

would be quite different according to even η1+ η2 or odd η1+ η2 ( see Fig.1, Fig.2 ).

5.4. Some examples

We consider the following irrational numbers α1 = [ 0; 2, 40, 1, 40, 2, 2, . . . ], α2 =

[ 0; 2, 40, 40, 2, 2, . . . ] and α3 = [0; 2, 1, 40, 20, 1, 10, 2, 2, . . .] and we observe behaviors

of discrepancies of irrational rotations based on α1, α2 and α3, because numerical

calculations for these irrational numbers are comparatively easier. Note that α1 is

an example of even η1 + η2 and α2 is an example of odd η1 + η2.

These three types of irrational rotations show typical unusual behaviors of dis-

crepancies. By taking this into account, we give mathematical observations for

discrepancies of irrational rotations based on π − 3, log10 7 and log10 37− 1.

Fig.9 α1 = [ 0; 2, 40, 1, 40, 2, 2, . . . ]
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Example 5.8. Fig.9 shows the graph of nD∗
n({iα1}). α1 has double large partial

quotient a2, a4. By applying Corollary 5.6, we can explain that 41 hills of short

period q2 are overlapped on one large hill of period q4 because q4 = 41q2 + 2 ( see
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Fig.1 ). In the case of odd–order double large partial quotients, from Corollary 5.6,

we can easily see overlapped hills like Fig.9.

Remark 5.4. In the case of α = π − 3, α has double large partial quotients

a4 and a78. Because 4 and 78 are both even, by taking into account the above

considerations in Example 5.8, we see that hills of short period q4 are overlapped on

one large hill of period q78, and we can expect overlapped hills like Fig.9.

Fig.10 α2 = [ 0; 2, 40, 40, 2, 2, . . . ]
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Example 5.9. Fig.10 shows the graph of nD∗
n({iα2}). α2 has double large partial

quotient a2, a3. In this case, η1 is even and η2 is odd. From Corollary 5.7, 40 hills

of short period q2 and one large hill of period q3 are canceled with each other. We

can see the shape of the graph like arches in Fig.10.

Remark 5.5. In the case of α = log10 7, α has double large partial quotients a7

and a62. Because 7 is odd but 62 is even, hills of short period q7 and one large hill

of period q62 are canceled with each other. We can expect large arches like Fig.10.

By the way, Setokuchi [22] claims that hills of period q6 repeat more than 2.7× 1027

times until n < q61. From Corollary 5.7, we can expect that large arches will appear

for n > q62.
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Fig.11 α3 = [ 0; 2, 1, 40, 20, 1, 10, 2, 2, . . . ].
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Example 5.10. Fig.11 shows the graph of nD∗
n({iα3}). α3 has triple large partial

quotients a3, a4 and a6. In this case, note that η1(= 3) is odd, η2(= 4) and η3(= 6)

are even, so that η2 + η3(= 10) is even. Thus, hills of period qη2 are overlapped

repeatedly on one large hill of period qη3 and the height of overlapped hills top is
1
4
aη2 +

1
4
aη3(= 7.5). Those overlapped hills and short hills of period qη1 are canceled

with each other and Fig.11 shows such compound arches. Note that aη1 > aη2 +aη3 .

Remark 5.6. In the case of α = log10 37− 1, α has triple large partial quotients

a11(= 248), a12(= 140) and a14(= 85). In this case, η1(= 11) is odd but η2(= 12),

η3(= 14) are even. Note also that aη1 > aη2 + aη3 similarly as in Example 5.10. The

numerical calculations is difficult in this case, but we can expect compound arches

like Fig.11.
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