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1 Introduction

The determination of the spectrum of a graph, i.e. the eigenvalues of the adjacency
matrix of a graph, is an important task for studying the combinatorial structure of the
graph.V? In this paper we consider vertex-transitive graphs including Cayley graphs as
special cases, and propose an algorithm of finding the spectra of those graphs. We
derive an expression of the adjacency matrix of a vertex-transitive graph in terms of
the irreducible representations of the Hecke algebra of its automorphism group.

This enables us to reducing our problem to the determination of the multiplicative
structure and the character table of the Hecke algebra. We show the utility of our
algorithm by means of several examples.

2 Basic structures of vertex-transitive graphs

Let M = (V, E) be a finite simple graph, namely, a finite graph without loops or
multiple edges. Here V is the set of vertices of M and FE is the set of edges of M. Since
M is a simple graph, each edge can be identified with the set of its extremal vertices.
A bijection g of V is called a graph automophism of M if and only if it satisfies {u,
v} € E if and only if {g-u, g-v} € E. M is called a vertex-transitive graph if and only
if the group G of graph automorphisms of M acts transitively on V.

Fix vwe V and put H ={h & G; h-vo = w}. Since G is transitive on V, there
exists a canonical bijection between the set G/H = {xH ; x € G} of all left H cosets
of Gand G vy = V. For v € V, let N(v) be the set of all vertices adjacent to v, that
is, N(v) ={w & V; {v, w} € E}. Write v = x-v, where x € G. Then N(v) = xN(w0)
= {x-u; u € N(w)}, so that M is a regular graph with valency |N(w)|. Here and from
now on, we denote the cardinality of a finite set X by | X].

Put S ={g9 < G; g-vo € N(w)}. Since vo & N(w), it follows that SNH = 0. Let «
e N(w). Since {vo, hu} = {h-vo, h-u} for h € H and {vo, u} € E, it follows that - u
& N{w). Hence N(wy) is stable under H and HSH = S. Let g = S. Since {vo, g7*- v} =
{g7" w0, g7 (g- o)} and {vo, g+ vo} € E, it follows that 7'+ vo € N(wo) and hence g™ & S.
This means S = S™".



8 Michihiko Hasuizume and Yoshiyuki Mori

Let H\G/H = {HgH ; g € G} be the set of all H double cosets of G. Since HSH =
S, it follows that S is a union of A double cosets, namely, there exists a subset &2 of
H\G/H such that S = UpeoeD. From SNH =0 and S = S™!, we conclude that H
& 2 and D € Q2 implies D' & Q. Conversely, let G be a finite group and H a
subgroup of G. Let 2 be a subset of H\G/H such that H & 2 and D € Q implies D!
€ 2. Put S = UpeoD. Then one can construct a graph M(G/H, 2) in the following
manner.

Take G/H as the vertex set and E(R) = {{xH, yH}; x 'y € S} as the edge set.
Then from HNS =0 and S = S~! we conclude that M(G/H, ) is a finite simple
graph. Obviously G acts transitively on G/H, which leads to a natural action on E(£).
Therefore M(G/H, 2) is a vertex-transitive graph. Note that any vertex-transitive
graph is isomophic to M(G/H, 2) for suitable G, H and 2. We remark that if H = (1)
then 2 = S and M(G, ) is nothing but the Cayley graph of G with respect to 2. For
a double coset D = HgH = H\G/H, let D/H be the set of all representatives of left H
cosets contained in D. Clearly

D= U sH. (1)

seD/H

Set ind(D) = |D/H|. Since N(xH) = {yH ; x™'y & S} where S = Ubpeo D, it follows
that

N(xH) = Dg)g{st; s € D/H} for xH € G/H. (2)

Hence the valency of M(G/H, ) is given by Xpeoind(D). Note that M(G/H, ) is
connected if H and S generates G. If £, 2. C H\G/H with 2N 2, = §, both satisfying
H & £2:and D € Q; implies D! € Q, (i = 1, 2), then the edge set of M(G/H, U £2)
is the disjoint union of the edge set E(£) of M(G/H, ) and the edge set E(£) of
M(G/H, ).

Now we consider the adjacency matrix A(G/H, 2) of M(G/H, 2). It is a linear
endomorphism on the vector space C®* of all C-valued functions on G/H, whose
definition is

A(G/H, 2)f(xH) = yHE,Z_]( )f(yH) for f € C“*.

xXH
From (2), we get

A(GIH, f(eH) = 32 f(xsH). 3

3 The Hecke algebra H(G, H) and its characters
Let CG be the group algebra of G over C. For a double coset D € H\G/H, define
e(D) € CG by

&(D) = |HI" 5 g. @

In particular for the trivial double coset H, we write ¢ = e(H) = |H|'Zsen k. Then
e is an idempotent of CG such that e = e = ek’ for h, ¥’ € H. Put H(G, H) = eCGe.
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Then H(G, H) is a subalgebra of CG, which we call the Hecke algebra of G with
respect to H. We can check easily that (D) = ind(D)ege for g € D, so that (D)
H(G, H) for D e H\G/H. 1t is well known* that {e(D); D € H\G/H} forms a
C-basis of H(G, H).

Recall that there is a natural one to one correspondence between a representation of
G and a CG-module. Let (o, W) be a representation of G on a vector space W. Set W#
={fe W,; o(h)é = & for h € H} and pn(e) = |H| ' 2ren o(h). Then pH(e) yields a
projection of W onto W¥. Consequently W* is a ‘H(G, H)-module via

on(ege)é = pn(e)(p(g)é) where g€ G and &€ € WX, (5)

Let G be the set of all equivalence classes of irreducible representations of G, and
G the subset of G consisting of irreducible representations (7, Vi) with Vi =+ (0). It
can be easily seen that (7, V) is an irreducible H(G, H)-module. It is known* that
all the irreducible H(G, H)-modules are of the form (zx, V) for (x, Vz) & G". The
character yr» of (xn, V¥) is defined by xxn(a) = Tr(xn(a)) for a € H(G, H).

Since mx(e(D)) = |H| ' 2vep mx(g), it follows that

xe(&(D)) = |H|' 2 xx(9) (6)
where . is the character of 7. The character table of H(G, H) is given by
(Znu(e(D)))neC:",DeH\G/H . (7)

Note that the trivial representation 1 of G is contained in G¥ and it holds that
rn(e(D)) = ind (D). Furthermore it is obvious that yzx(e) = dim V¥

4 The adjacency matrix A(G/H, 22) and the representations of H(G, H)

Let C¢ be the vector space of all C-valued functions on G. Then C¢ is a left and a
right CG-module via L(g)¢(x) = ¢(g7'x) and R(g)¢(x) = ¢(xg) where g, x € G and ¢
& C°. Consider the right CG-module (R, C°). The subspace (C¢)” of all right H-fixed
vectors of C¢ is clearly isomorphic to C®", so that C®* can be viewed as an
H(G, H)-module under R%. In particular we have by (4) and (1)

Ry (e(D))f(xH) = |H’_1g§0f(xgH) = se%yf(st) for f & C¢/¥.
Combining this with (3), we obtain

Lemma 1. The adjacency matrix A(G/H, ) of the vertex-transitive graph M(G/H,
2) can be written as

A(GIH, 2) = I Ru(e(D)). ®)

Applying the well known theorem of Peter-Weyl, we have the direct sum decomposi-
tion

CoH = @ Vvre Vi

TEGH
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where V7 is the dual space of Vi, and moreover
Rn(a) = B 1®711(a) for a e H(G, H) 9)

where [ is the identity endomorphism of V3. From (9) and Lemma 1, we obtain the
following results.

Theorem 1. (i) For = = G¥, define a linear endomorphism A(G/H, 2) on V¥ by
AxG/H, 2) = X mn(e(D)). (10)

Then the adjacency matrix A(G/H, 2) of the vertex-transitive graph M(G/H, 2) can be
written as

A(G/H, 2) = 8,19 A(G/H, Q). (11)

(i) Let o(M(G/H, 2)) be the spectrum of M(G/H, ), namely, the set of all eigen-
values of A(G/H, 2). Let 0(A-(G/H, 2)) be the set of all eigenvalues of A(G/H, 2).
We denote by d(n)o(AG/H, Q)) the set of all eigenvalues of A(G/H, Q) counted
with multiplicity d(n) where d(n) = dim Vy. Then we have

o(M(G/H, 2)) = Y,d(1)o(AG/H, 2)).

Therefore our problem of determining o(M(G/H, 2)) is reduced to that of finding
o(A(G/H, Q)) for » € G". In the sequal we propose an algorithm of determining
0(A(G/H, 2)). Put d = dim V# and write 0(A.(G/H, 2)) = {A, ** +, A4}. Consider the
k-th power sum of the eigenvalues A, *+*, Aq; pr = 2514F (B =1). Then p. =
Tr(A.(G/H, 2)*). Write 2 = {Dy, --+, D;} and ¢; = &(D;) (1 < 7 < r) for simplicity.

From the definition of A.(G/H, 2), we conclude that

An(G/H, Q) = ) él =17f7-t(€i1 ce 61’.)
and hence

’
Dr = . 2 Xn:u(é'n e Ei,.).
1'1-0'2k:1

z

This means that the power sums of eigenvalues can be read from the multiplication
table and the character table of H(G, H).

Recall that by Newton’s famous formula the characteristic polynomial @(A(G/H,
2); ) of A(G/H, 2) is given by

A4 Q91 pd2 o 1]
o1
@(AN(G/H,.Q),A):(CZ'!)—I P:z le 2 . O
o boa e b d—1
pa basi v b pod

Solving the characteristic equation @(A-(G/H, 2); A) = 0, we get the eigenvalues of
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A-(G/H, ). The most simplest case is that (G, H) is a Gelfand pair. That is the case
dim V¥ =1 for all (x, Vix) € G¥. In this case yxn = mx and hence

S AGIH, 9) = { £ rmsd (D)}

and

o(M(GIH, Q) =\, d(0)] T zerl (D)},

5 Examples

In this section we take G = S;s (the symmetric group on {1, 2, 3, 4, 5}). Every element
of G can be written as a product of pairwise disjoint cycles. We denote by (7142 *** 7r)
the »-cycle on {7, 7, *+, -} C{1,2,3,4,5}. It is well known® that the irreducible
representations of G and the conjugacy classes of G are parametrized by the partitions
of 5, so that

G ={(5),(4,1),(3,2),(31,1),(22,1),(21,1,1), (1,1,1,1,1)}.
We recall that

dimV,=1,4,56,54,1
for 7 = (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1) respectively.

In the following, we write the corresponding irreducible character by the same

symbol; for example x4,y = (4,1). For a graph M, we write the spectrum o(M) of M
as follows;

A, Aa, vee, A
o(M) = < 1 2 s >
ml’ mz, ] s ms
where A, > A2 > -+ > As are all the distinct eigenvalues of the adjacency matrix of M
and my, m, * -+, ms are the corresponding multiplicities. In the sequel, we simply write

M(8) for the vertex-transitive graph M(G/H, 2) defined by 2 ¢ H\G/H.

Example 1. Let G =Ss; and H = {Gi; 0<i < 4} where ¢ = (12345) e (. Then
|G/H| = 24 and H\G/H = {D.; 0 < i < 7} where

Dy=H, Dy = H(12)(35)H, D.= H(1243)H, Ds= H(1254)H,
Di= H(12)H, Ds= H(13)H, Ds = H(123)H, D.= H(124)H.

Since Di''= D, D,y = D3, D57 = Dy, Dyt = Dy, D5 = Ds, Ds™ = Ds, D:;™' = D; it
follows that there are 64 possible choices of 2 in H\G/H.

Put &; = e(D;) (0 < ¢ < 7) and e = &(Dy). Then the multiplication table of H(G, H)
is given as follows;
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e €1 &2 &3 &4 &s Ee &7
e e & &2 &3 &4 Es Es &7
&1 & e &3 &2 &s &4 &7 Ee
E2 | &2 E&3 &1 e &7 133 &4 Es
& | €& & € & 1] &7 Es &4

€| & & & & be+a baei+a 5e+B Se+f
€ | & & €& & beata Se+a 5e+ B Se+f
€ | & €& & €& bHe+f S5e+f Se+a Sa+a
€| & € € & be+B bes+B Ser+a Se+a

where a = 2e¢+2&7 and B = 2e4+2¢s.
Decomposing the induced CG-module C¢# into irreducibles, we have

G* ={(5), (3,2), (3,1,1), (2,2,1), (1,1,1,1,1)}.

Using the character table of Ss¥, we can compute the right hand side of (6) and obtain
the character table of H(G, H). The result is

e &1 &2 &3 &4 &s €s &7
(5) 1 1 1 1 5 5 5 5
(3,2) 1 1 -1 -1 1 1 -1 -1
(3,1,1) 2 =2 0 0 0 0 0 0
(2,2,1) 1 1 1 1 -1 -1 -1 -1
(1,1,1,1,1) 1 1 -1 -1 -5 =5 5 5.

We illustrate our method of determining o(M(2)) with some examples.

Let 2 = {D.}. From the character table we find that dim Vi = y.»{(e) =1 for 7 =
(5), (3,2),(2,2,1) and (1,1,1,1,1). For those n, we have 6(A(M({D4}))) = {xzn(€4s)}. From
the character table we read x.x(es) = 5,1, —1, —5 for 7 = (5), (3,2), (2,2,1) and (1,1,1,
1,1) respectively. Since dim V&,,;) = 2, we have to compute the power sums p; and . in
this case. But using the multiplication table and the character table, we have p = (3,
1,1)(es) = 0 and p. = (3,1,1)(&s®) = (3,1,1)(5e+2e&s+2&7) = 10.

Consequently the characteristic polynomial @(Aa.1n{({D4}); A) is equal to A*—5 and

hence 6(Aw1,n({Dd})) = {V/5, —V5}. Considering the dimensions of the members of G¥,
we get

5) \/gy 17 _]-) _'\/gy _5>

oo = (7 T e )

Since the multiplicity of the maximal eigenvalue 5 is 1, it follows that M({D.}) is a
connected 5-regular graph, and since the distribution of the eigenvalues is symmetric
with respect to the origin, we conclude that M({D,}) is a bipartite graph.

Take 2 = {Ds}. Then y(es) =5, —1, —1,5 for 7 = (5), (3,2),(2,2,1) and (1,1,1,1,1)
respectively. Since (3,1,1)(&s) = 0 and (3,1,1)(&?) = 10, we have o(Aw.in({De})) = {5,



Spectra of Vertex-Transitive Graphs and Hecke Algebras of Finite Groups 13
—/5}. Therefore we obtain

s = (> b )

2, 6, 10, 6

Note that M({Ds}) is the disjoint union of two skelton graphs of the icosahedron.

Take 2 = {D\, D, Ds}. Then ym(ei+e:+e) =17 —1,1,5 for 7 = (5),(3,2),(2,2,1)
and (1,1,1,1,1) respectively. From the multiplication table, it follows that (e1+ €2+ €6)®
= 6e+e1+26e3+ e+ &5+ 2es+4e7. Therefore pp = (3,1,1)(e1+e2+¢e6) = —2 and p. = (3,
1,1)((&14 &2+ €6)%) = 10. The characteristic polynomial of Aa.1,1y({ D1, Ds, De}) is equal to
A*4+2A—3 and hence the eigenvalues are 1, —3. Consequently we have

o(M({Ds, Dy, De))) :<7’ R _3>

1, 1,11, 5 6/

In this way we can determine the spectra of all the vertex-transitive graphs on G/H
arising from 2 in H\G/H.

Example 2. Let G=Ss and H = S:xS; = {1, (12)} x{1, (34), (35), (45), (345),
(354)}. Then |G/H| =10 and H\G/H = {Dy= H,D, = H(13)H, D. = H(13)(24)H}.
Since D,™' = D, and D;™! = D, it follows that all the possible choices of 2 are 0, {D:},
{D.} and {D\, D,}. We find that the corresponding vertex-transitive graphs are M () =
Ko, M{D\}) = J(5,2), M({D:}) = Os and M({D,, D»}) = Ko respectively.

Here K)o is the complete graph on 10 vertices, K, is the complement of K, J(5,2)
is the Johnson graph and Os is Peterson graph. Put e = &(Dy), &1 = &(Dy) and & =
&(D:). Then the multiplication table of H(G, H) is given by

e €1 &2

e e &1 &2
€1 &€ 6€+361+462 2(€1+ Ez)
E2 &2 2(61+62) 3€+€1

This yields that H(G, H) is commutative, namely, (G,H) is a Gelfand pair.
Decomposing C¢# into irreducibles, we have G¥ = {(5), (4,1),(3,2)}. Using the charac-
ter table of Ss, we obtain the character table of H(G, H);

e €1 &2

(5) 1 6 3
4D 11 1 =2
321 =2

As in Example 1, we can deduce o(M(£2)) from the character table of H(G, H). The
results are
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s = ( ;). R |

3,1, —2

oo = (7 7,

) oo D) = (] )

Example 3. Let G = Ss and H = S; = {1, (12), (13), (23), (123), (132)}. Then |G/H|
=20 and H\G/H = {D:; 0 < i < 6}, where

Do=H, D =H(5H, D= H(34)H, Ds= H(35H, D,= H(345)H,
Ds = H(354)H and Ds= H(24)(35)H.

Since D, = D; (i = 1,2,3,6), D;"' = Dsand Ds* = D,, there are 32 possible choices
of Q c H\G/H. Put ¢; = &(D:) 1 <7 <6) and e = &(Dy). Then we can show that
H(G, H) is an algebra generated by &, and ¢; with the relations

el=¢e, &'=3e+2e,
(€162) = 261+ €26162— 616261,
(e261) = e162+ 26162 €16261.

Note that
€3 = €16:261, €1 = €261, & = €& and & = &:26162— 16261
As in the previous examples, we have
G" ={(5), (4,1), (32), 31,1}
The character table of H(G, H) is given by

e &1 &2 (] &4 Es Es
(5) 1 1 3 3 3 3 6
(4,1) 2 0 2 2 =1 -1 —4
(3,2) 1 1 -1 -1 -1 -1 2
31,11 -1 -1 -1 1 1 0

We list up the spectra of several vertex-transitive graphs on G/H;

1, -1

o 10) oML = D) = (7 0

AM(D) = ( - 15

oo = (72 7Y
oDy, D) = (D D) = (&3 0 71 7E)

1’ 4) 57 4, 6
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oD, D) = (72

o0, D) = (2

O‘(M({Dz, D4, Ds}))

O'(M({Dz, Ds, DG})) =

I
N TN
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