愛玉子によるパパンインの固定化
（天然物担体利用による酵素の固定化（第3報））

河辺誠一郎*，河辺要太郎**，宇佐美昭次***

岡山理科大学 基礎理学科*
岡山理科大学 応用化学科**
早稲田大学 理工学部 応用化学科***

（昭和59年9月27日 受理）

緒 言

固定化酵素および固定化微生物を調製するにあたり、その担体には、より高い安全性と温和な調製条件を持つ素材が選ばれることが望ましい。これらの条件に近いものとして、これまでα-カレギーナン、アルギン酸ソーダ、アガロースなどの海藻起源の天然多糖物が研究されており、筆者らは指桿ベクチンを利用した固定化について報告1)2)3)した。しかし、これらの素材に関しても、ある程度のゲル化の為の熱や薬品処理が要求される。

本報告で使用した愛玉子は、その種子を冷、温いずれの水を使用しても短時間その中に浸漬するだけで寒天状を多糖と見られる硬いゲル状の物質が得られるなど特徴的な性質を有している。また、台湾に於ては食用として供されるなど、前述の条件に最も近い物質として利用しうるものと考えられた。その性質に関しては、1930年頃に三宅ら3)4)5)によっていくつかの報告があるのみで、以後詳細な報告は見られず、これを固定化に応用した報告は見当たらない。そこで、筆者らはこの素材を利用した場合の酵素固定の可能性とゲルの性質について検討し、いくつかの知見を得たのでここに報告する。

実 験 方 法

使用担体および固定化酵素調製　愛玉子（Aigyokushi）は、学名を Ficus pumila L. var. awkeotsang Corner，別名をカンテンイタビと呼ばれ台湾に特産する桑科，オオイタビ種の植物6)である。この果実中に多数の長楕円形の種子（径果：1 × 3 mm）を含み、この種子がアイギクシと称される。これを水抽出することにより半透明寒天状のゲルが得られ溶菌食品として利用9)される。この愛玉子果実10gに一定濃度のパパンイン酵素（東京化成工業社 22.1 mU/mg）水溶液 100 ml を直接加え室温で15分間十分に摂拌した後冷布で手早く絞り取る。このゲルの一定量をシャーレに分取し約5 時間、4℃で放置しゲル化させる。ゲルの強化は水道水または低濃度の塩化カルシウムなどのゲル強化剤中に一定時間浸漬する。その後余分な強化剤、水溶性低分子フェノール物を蒸溜水または水道水中で1夜4
温度で透析除去して固定化物を得る。また抽出後の糖分間隔した後、注射器を用いてゲル強化効果中に注入し、滴下することによって系状および球状のゲルを得ることも可能である。
こうして得られた担体はそのまま湿潤状態で、あるいは凍結乾燥した発泡乾燥状態で実験に供した。

酵素活性測定法　酵素活性の測定は、そのアミダーゼ活性を次のようにして求めた。すなわち、0.01 M L-システインと0.004 M EDTA・2Naを含む0.1 Mリン酸緩衝液pH6.8中に酵素（固定化酵素）を加え、37℃で30分間保持後活性化したのち1.2 mM N-α-ベンゾイル-DL-アルギニン-p-ニトロアミリド塩酸塩（BAPNA・HCl；SIGMA Chemical社製。5％メチルスルホキサイドを含む）リン酸緩衝溶液を加え30分間振盪した後、素反応を行なった。反応停止には30％酢酸水溶液を用い、遊離生じたp-ニトロアミリン（p-NA）の量を410 nmでの分光分析により測定した。

パラインの金属修飾については、既報12,11,13で示したとおり、Kimmel14らのマーキュリー化法を参考に一部改良して行なった。

結果および考察

アイギョクシゲルの性質　a）ゲル形成　アイギョクシゲル化物の性質は次のようなである。ゲル形成は蒸溜水100 mlに対し種子3〜4 g程度使用の場合よりも認められるが、十分な硬さを保持した良い状態を保つためには種子6〜7 g以上が必要である。しかし、15 g以上使用すると処理中に硬化が進みすぎ、均一なゲルを得るのが困難となる。そこで固定化酵素の調製には、水100 mlに対し種子10 gを用いて行なった。種子10 gを多量の水で完全に抽出を行なうと、経乾燥重量として1060 mgの抽出物が得られる。このゲル物質は茶色半透明をしているが、十分透析することにより白色半透明となる。しかし、蒸溜水中ではゲルは膨潤し軟弱となる。一方、この半透明ゲルを水道水またはアルカリ土類金属（Ca⁺⁺、Ba⁺⁺など）および各種金属（Zn⁺⁺、Fe⁺⁺⁺＋、Cu⁺⁺⁺＋、Ni⁺⁺、Mn⁺⁺⁺⁺＋など）の希薄塩溶液中に浸漬すると、徐々に硬化を示す。またアセトンやアルコールなどによりゾル状のものもゲル化が見られる。さらに水酸化ナトリウムなどのアルカリ処理で溶解性を示し、塩酸などの酸処理によりゲル化を示すが、いずれの場合も可逆的でベクチンやアラビアン酸に似た多糖の性質が認められた。また、種子を酵素処理、適切な熱処理を行なうとゲル化の進行が困難となる性質を示す。抽出したままのゲルは、水を加え加熱すると溶解するが、冷却により再ゲル化する。一方ゲル強化剤を用いて処理したもののように蒸溜水中で長時間煮沸しても容易に溶解しない。

b）生成　透析したゲルを用いてアンスロン類硫酸反応15を行なうと、ウロン酸の発色を示し、その吸収曲線（Fig. 1）は、ガラクトース酸の吸収に似た曲線を示した。この製品ゲルの酸加水分解物をベーパークロマトグラフィーにより分析した結果もガラクトース、マンノースと考えられる糖が若干含まれてい
Fig. 1. Absorption spectra of sugars by Anthrone-H₂SO₄ reaction

Alg. A.: sodium alginate, Pec.: pectin,
Alg. G.: aigyoukushi gel, Gal. A.: galacturonic acid,
Gal.: galactose, Glu.: glucose, Fru.: fructose,
Aga.: agarose, Car.: k-carrageenan.

ることが考えられ、ベクチンの組成に比較的類似していると思われる。

c) 分子量 その平均分子量については、ゲル物質の溶解性を検討の余地があるものの、ゲル経過法により推定した所では、相模ベクチン（約15〜30万）より大きい35万程度の分子量と考えられる。

d) ゲル強化 アイギョクシ水抽出物はそのままでも十分硬度のあるゲルを形成し、その凍結乾燥固定化ゲルもある程度までは役割を果たす。しかし反応条件（緩衝液、温度、pHなど）次第ではゲル強度が弱まる傾向が認められる。そのため、若干のゲル強化処理を行なう必要があると考えられた。そこで、前述の各種金属塩（1 M溶液、30分浸漬）のうちの代表的なゲル強化剤処理によって得られたゲルが、0.1 Mリン酸緩衝液中でその耐熱性にどのような挙動を示すかについて検討した。その結果を Table 1 に示す。Ca²⁺、Ba²⁺、Fe³⁺および水道水（1夜浸漬）で処理したゲルは、耐熱性が高いため Cu²⁺や K⁺を用いたゲルでは、リン酸緩衝液中では容易に溶解してしまう。また水酸化カルシウムや酢酸バリウムを用いたゲルは、溶液に自滅を生じると強化剤の緩衝液との反応や酵素活性への悪影響なども考えられ、塩化カルシウムまたは水道水による温帯適処理法が比較的良好と考えられた。これらのゲルの耐熱性は既報1〜2のベクチンゲルの場合に比べて5〜15℃以上の高い耐熱性を示している。
Table 1. Thermal stability of aigyokushigel-entrapped papain

<table>
<thead>
<tr>
<th>Gelating agent</th>
<th>Temperature and residual rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35°C</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>100</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>100</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>100</td>
</tr>
<tr>
<td>Ba(CH₃COO)₂</td>
<td>100</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>100</td>
</tr>
<tr>
<td>KCl</td>
<td>100</td>
</tr>
<tr>
<td>tap water</td>
<td>100</td>
</tr>
</tbody>
</table>

* in 0.1 M phosphate buffer, pH 6.8, 120rpm, incubate for 1 hr., respectively.

Fig. 2. Repeated use of immobilized papain

*Hg-P: Immobilized mercury-papain,
*Ni-P: Immobilized nickel-papain,

* : Supports in a state of yarn.

Each gels were prepared by various concentration of CaCl₂ or tap water. The activity of native papain is taken as 100%.
連続酵素反応 以上のようにして得られた各種ペクチン固定化担体を用いて、その連続酵素反応を検討した。反応は既報11）12）で示したようにガラス洗浄器（ハリオ15 A-G3）を用いパッチ法で行なった。実験に際し1反応ごとに10 mlの緩衝液で洗浄した。第1回目の活性化にかぎりEDTA・2Naを含む通常通りの活性化剤を使用し、その後の活性化は担体への影響を考慮してペクチンの場合と同様、0.05M-レシチン溶液2 mlのみを基質1.2 mM・BAPNA 5 ml に同時添加して繰返し酵素反応を行なった。その結果を Fig 2 に示す。これよりペクチンをそのまま固定化し、水道水中で1夜透析したものでは、最初90％程度の活性を示しその後70～75％で安定化する。一方1～50 mMの塩化カルシウムを用いてゲル強化したものでは、60～80％の活性を示す。100 mM 以上の濃度の塩化カルシウムを用いると、その活性は50％以下となるが、担体の硬度が高いため、その安定性は初めから良好である。これに対し、あらかじめ水銀やニッケルでペクチンの活性基（スルフヒドリル基）を保護してゲル固定したものでは、より高濃度のゲル強化剤を使用しても CaCl₂などによる酵素活性の阻害を受けないだけでなく、レシチン単独の活性化剤の使用も可能となるため担体の崩壊も起こらず長期間安定に100％近い活性を維持した良好な固定化ペクチンを得ることができる。一方分子量および球状の固定化物の場合低濃度のゲル化剤ではゲル化中の酵素およびゲル成分の流出があり、それに対し高濃度では活性阻害の影響が大きくため、金属による修飾が不可欠であるなどペクチンの場合と同様な考慮が必要と考えられる。またこの担体を用いると、微生物の固定化に有効であるという結果も得ている。更に詳細な点に関しては、現在検討中である。

要 約

台湾産特産愛玉子種子を用いて酵素固定の可能性とゲルの性質について検討し、次の結果を得た。

1）愛玉子種子表面にはガラクチュロン酸を主成分とするペクチン類似ゲル化多糖物質が含まれている。

2）この種子に水を加え短時間攪拌するだけで簡単にゲル物質が得られる。

3）アイジクシゲルはそのままでも十分便が、アルカリ上流金属などで処理すると一層硬化し、水に不溶となる。

4）これを利用し酵素を固定し連続反応を行なうと、安定で高い活性価を示すなど酵素の固定化担体として非常に優れた性質を持つことが認められた。

本研究を行うに当たり、御指導、御鞭撻を賜りました早稲田大学理工学部、加藤忠蔵教授、鈴木晴男教授、深原浩教授に厚く御礼申し上げます。

（本研究の一部は、早稲田大学理工学部、宇佐美教授の指導のもと、早稲田大学理工学研究員として行なったものである。）
Immobilization of Papain with Aigyokushi (Ficus pumila
L. var. awkeotsang Corner) seed Polysaccharide.

Seiichiro KAWABE*, Yohtarou KAWABE** and Shoji USAMI***

*Department of Fundamental Natural Science, Okayama University of Science, Ridai-cho 1-1, Okayama 700, Japan.
**Department of Applied Chemistry, Okayama University of Science, Ridai-cho 1-1, Okayama 700, Japan.
***Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 160 Japan.

Aigyokushi (Ficus pumila L.var. awkeotsang Corner) fruit contains the gelation material of polysaccharide and exhibits the unusual properties.

Aigyokushi hard gel of an agarose gel-like was easily able to obtain from a small amount of the seeds by stirring and extracting with distilled water for 15~20 minutes at room temperature. In analogy with pectin, the main component of the gel was composed of galacturonic acids.

The gel was became more hardening by the use of the alkaline earth metals and other several metals, whereupon the hardening gel was able to use very effectively as a support for immobilized enzyme. Activity of this immobilized papain was maintained at high levels and very stable for repeated usage.

It recognized that the propaties of aigyokushi gel were similer to, or more superior than that of pectine for support of immobilized enzyme reported in the previous paper1~2).